Proofs of Quantumness

Alexandru Gheorghiu (ETH Ziirich — Chalmers University of Technology)

Quantum Advantage

Article

Quantum supremacy usinga programmable
superconducting processor

hitps:/fdoiorg/10.1038/541586-019-1686-5
Raceived:22 uly 2019

Published online: 23 October 2019

Ofer Naaman, Charles Neil, &

NicholssC. Rubin, Daniel Sank’ KevinJ, ' Vadi " Kevin . Sung'™,
Matthew D. Trevithick'
2. Jomie Yao' Ping Yeh, Adam Zalcman', Hartmut Neven' & John M. Martnis**

process
S3qubits, * (about10%).

distribut

Google, 2019.

Quantum Advantage

Article

Quantum supremacy usinga programmable
superconducting processor

QUANTUM COMPUTING

T —
) . e e

Quantum computational advantage using photons | i "’““ﬁ’tfl“}“t‘“

S s

B e

HanSen Zhongt2, Hl Wang™ . YurHao Deng' Ming-Cheng Cher' ", LiChao Peng’

Strong quantum computational advantage using a superconducting quantum processor

B S ra e

ulin Wu. War ¢ Ming-Cheng Chen, s Chen? Tung-Hum
ung 14 1

T
) G5 shacgy

Shaowei Li, ' Yoan Li,

e Hong S0 i Sun 12+ L
Weifeng Yang." Yang Yang” Yangsen Yo
* Haibin Zhang.” Kaili Znas e Zhang
Zhu.!* Chao-Yang Lu.">* Cheng-Zhi Peng. > Xiaobo Zhu,'>" and Jian-Wei Pan
tfe Natonl Laborstos for Py Scicnces t he

Microscale and Departmen of Modern Physics
niversins o Sienre. and Tochmolows af Chin Heli 207, Chin

Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling
Qingling Zhu! ' St Ca ! Fusheng Chen Mg Cheng Chen.

Chung,">" Hui D Y Du- Daojin Fn.' ! Ming

Guo, - Lianchen Han,'* Linyin Hong.! He-Liang Hua

Xiawei Chen,

** Haoran Qan.! 07 Hao
* Dachio Wu. - Yulin Wa. >
Sanghan Vi * Chong i

Staowei L Vuan Li > Futia Liang.
Rong.'* Hong Su

g Mk obome o e et s e Myl ent Dt of Mo Pz
Universny o Science and Technology of China, Hefei 230026, China
*Shonge B, CA Corerfor sl i Qutn informtion ol Qoo Piic
Universiry of Scence and Te
Stongha R Cone o G e Songh 207515 Chiva

san Key Laboratory of Quantun Information and Crpiographs. Zhenghou 450000, China
o Fimam K Laboraory of Qucaton Iiormecion ond Copiograpys Zhrauhon 450000, G

p 2021

Google, 2019.

USTC, 2021.

USTC, 2021.

USTC, 2021.

Quantum Advantage

p 2021

Quantum advantage but classically intractable to verify results.

Article

Quantum supremacy usinga programmable
superconducting processor

QUANTUM COMPUTING nf‘s\\\:vla (rnmw‘:plm 'l:i;y. ;nfh:mmmm
Quantum computational advantage using photons

torage. This sanple sze dependence
HanSen Zhongt2, Hl Wang™ . YurHao Deng' Ming-Cheng Cher' ", LiChao Peng’

an analog to loopholes
(10)—suggests bl quantum adsaa

Strong quantum computational advantage using a superconducting quantum processor

32 Fusheng Chen,>
Da X

Yi
2 Han Zhao.? Youwei Zhao," > Licy
Xiaobo Zhu > and Jian-Wei Pan

* Chao-Yan,

i Nainal Labontoyfor Phyical cences a the Miemscale ad Oaparnen of odern Phsics
Tniversi of 1 Tochnalows of China Heloi 23006, Chins

Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling

y RSV
Dacjin Fan > Ming G
* Linyin Hong. ' He.

Stiowet L Yoan L Futan Lins
ne S ua S

Zhao !> ‘!lmg Zhou, *mnvu.glu Cheng-Zhi Peng. = o T
*Hefei National Laborators for Physical Sciences atthe Microscale and Department of Modern Physics
Universny of Science and Technology of China, Hefei 230026, Ch
“Shanghai Branch, CAS Center for Excelence in Quantn Inform
Universiy of Science and Technologs of China, Shangha 2
“Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
*QuannunCTek Co, Lud, Hefei 210026, China
“Henan Key Laborators of Quantun Inforation and Cripiography. Zhen<hou 450000, China
“Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China

Google, 2019.

USTC, 2021.

USTC, 2021.

USTC, 2021.

Proofs of quantumness

0Thanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Verifier

Prover

OThanks to Vivian Uhlir for the figures!

Proofs of quantumness

Proof of quantumness (PoQ)

Let A € N be a security parameter. A PoQ is an interactive protocol
between a poly(\)-time classical verifier and a poly(\)-time prover,
such that

0Thanks to Vivian Uhlir for the figures!

Proofs of quantumness

Proof of quantumness (PoQ)

Let A € N be a security parameter. A PoQ is an interactive protocol
between a poly(\)-time classical verifier and a poly(\)-time prover,
such that

e Completeness: There exists a quantum prover that makes the
verifier accept with probability at least c(\),

0Thanks to Vivian Uhlir for the figures!

Proofs of quantumness

Proof of quantumness (PoQ)

Let A € N be a security parameter. A PoQ is an interactive protocol
between a poly(\)-time classical verifier and a poly(\)-time prover,
such that

e Completeness: There exists a quantum prover that makes the
verifier accept with probability at least c(\),

e Soundness: Any classical prover makes the verifier accept with
probability at most s()),

0Thanks to Vivian Uhlir for the figures!

Proofs of quantumness

Proof of quantumness (PoQ)

Let A € N be a security parameter. A PoQ is an interactive protocol
between a poly(\)-time classical verifier and a poly(\)-time prover,
such that

e Completeness: There exists a quantum prover that makes the
verifier accept with probability at least c(\),

e Soundness: Any classical prover makes the verifier accept with
probability at most s()),

such that ¢(\) — s(A) > 1/poly ().

0Thanks to Vivian Uhlir for the figures!

Proofs of quantumness

Proof of quantumness (PoQ)

Let A € N be a security parameter. A PoQ is an interactive protocol
between a poly(\)-time classical verifier and a poly(\)-time prover,
such that

e Completeness: There exists a quantum prover that makes the
verifier accept with probability at least c(\),

e Soundness: Any classical prover makes the verifier accept with
probability at most s()),

such that ¢(\) — s(A) > 1/poly ().

Soundness is based on a computational assumption.

0Thanks to Vivian Uhlir for the figures!

A simple 2-message PoQ

A simple 2-message PoQ

e Pick random A-bit primes p, g
and compute N = p - q.

A simple 2-message PoQ

e Pick random A-bit primes p, g
and compute N = p - q.

e Send N to prover.

A simple 2-message PoQ

N
—_—
e Pick random A-bit primes p, g
and compute N = p - g. e Factor N using Shor's algorithm.

e Send N to prover.

A simple 2-message PoQ

N
—_—
(p',q")
L
e Pick random A-bit primes p, g
and compute N = p - g. e Factor N using Shor's algorithm.

e Send N to prover. e Send factors p’, ¢’ to verifier.

A simple 2-message PoQ

N
_—
(r',q")
SR A
e Pick random A-bit primes p, g
and compute N = p - g. e Factor N using Shor's algorithm.
e Send N to prover. e Send factors p’, ¢’ to verifier.

o Acceptif N=p'-q’.

A simple 2-message PoQ

N
_—
(r',q")
SR A
e Pick random A-bit primes p, g
and compute N = p - g. e Factor N using Shor's algorithm.
e Send N to prover. e Send factors p’, ¢’ to verifier.

o Acceptif N=p'-q’.
PoQ, assuming Factoring ¢ BPP.

A simple 2-message PoQ

N
_—
(r',q")
SR A
e Pick random A-bit primes p, g
and compute N = p - g. e Factor N using Shor's algorithm.
e Send N to prover. e Send factors p’, ¢’ to verifier.

o Acceptif N=p'-q’.
PoQ, assuming Factoring ¢ BPP.

Can construct such PoQs from any problem, P, such that!
P € BQP, P ¢ BPP.
1Technically, want P ¢ AVBPP.

PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P ¢ BQP.

PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]

PoQs with more than 2 messages
Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

Trapdoor claw-free function (TCF)
We say a family {f\ : Z — O} cn is a TCF family if:

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]

PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

Trapdoor claw-free function (TCF)
We say a family {f\ : Z — O} cn is a TCF family if:

Efficient evaluation
Poly-time algorithm that, given x € Z, computes f(x).

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]

PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

Trapdoor claw-free function (TCF)
We say a family {f\ : Z — O} cn is a TCF family if:

Efficient evaluation
Poly-time algorithm that, given x € Z, computes f(x).

Two-to-one
For every y € Im(fy), there are exactly two xo, x1 € Z, fr(x0) = fr(x1) = y.

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]

PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

Trapdoor claw-free function (TCF)
We say a family {f\ : Z — O} cn is a TCF family if:

Efficient evaluation
Poly-time algorithm that, given x € Z, computes f(x).

Two-to-one
For every y € Im(fy), there are exactly two xo, x1 € Z, fr(x0) = fr(x1) = y.

Claw-free
Intractable to find xo, x1 € Z, f(x0) = fi(x1) = y.

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]

PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

Trapdoor claw-free function (TCF)
We say a family {f\ : Z — O} cn is a TCF family if:

Efficient evaluation
Poly-time algorithm that, given x € Z, computes f(x).

Two-to-one
For every y € Im(fy), there are exactly two xo, x1 € Z, fr(x0) = fr(x1) = y.

Claw-free
Intractable to find xo, x1 € Z, f(x0) = fi(x1) = y.

Trapdoor
There is a trapdoor ty and a poly-time algorithm that, given t\ and y € Im(fy)
can compute xp, x1 € Z, such that fn(xo) = fi(x1) = y.

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), xo € Z, and d € {0,1}*°¥™ (d # 0) such that:

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), x0 € Z, and d € {0, 1}*°¥™ (d # 0) such that:

d-(X(J€BX1)=07
fi(x) = Alx) =y,

with probability non-negligibly greater than 1/2.

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), x0 € Z, and d € {0, 1}*°¥™ (d # 0) such that:

d-(X(J€BX1)=07
fir(x0) = iA(x1) =y,

with probability non-negligibly greater than 1/2.

Intuition: if you know Xy you shouldn't know even a single bit of x;.

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), x0 € Z, and d € {0, 1}*°¥™ (d # 0) such that:

d-(X(J€BX1)=07
fir(x0) = iA(x1) =y,

with probability non-negligibly greater than 1/2.

Intuition: if you know Xy you shouldn't know even a single bit of x;.

Adaptive hardcore bit implies claw-free property.

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), x0 € Z, and d € {0, 1}*°¥™ (d # 0) such that:

d-(X(J€BX1)=07
fi(x) = Alx) =y,

with probability non-negligibly greater than 1/2.
Intuition: if you know Xy you shouldn't know even a single bit of x;.

Adaptive hardcore bit implies claw-free property.

STCFs can be constructed from LWE.

PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), x0 € Z, and d € {0, 1}*°¥™ (d # 0) such that:

d-(XoGBX1)=0,
fir(x0) = iA(x1) =y,

with probability non-negligibly greater than 1/2.

Intuition: if you know Xy you shouldn't know even a single bit of x;.
Adaptive hardcore bit implies claw-free property.
STCFs can be constructed from LWE.

TCFs can be constructed from factoring, discrete-log, Ring-LWE, LWE.

A 4-message PoQ (the BCMVV’18 protocol)

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.

With probability 1/2.

f

VS Im(f,\)

-

Preimage
_—

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.

With probability 1/2.

f

VS Im(f,\)

-

Preimage

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t).

With probability 1/2.

f

ty _

VS Im(f)\)

4

Preimage

Verifier accepts if f(x) = y.

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.

With probability 1/2.

f

VS Im(f,\)

-

Equation
_—

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.

With probability 1/2.

f

VS Im(f,\)

-

Equation

Verifier accepts if d - (xo @ x1) = 0, with f\(x0) = A (x1) = y.

A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.
With probability 1/2.
Verifier uses t) to obtain xg, x; from y and checks the equation.

f

VS Im(f,\)

-

Equation

Verifier accepts if d - (xo @ x1) = 0, with f\(x0) = A (x1) = y.

BCMVV’18 completeness

07 x 10™)y
07)x 107)y

BCMVV’18 completeness

07)x 107)y
107)x [07)y
H®"

ﬁ Exe{o,l}" [X)x 10M)y

BCMVV’18 completeness

07 x 10™)y
07)x 107)y

1 m
o— Ur ﬁzxe{o,l}n X)x 10M)y

L Yoy xRy

BCMVV’18 completeness

07 x 10™)y
07)x 107)y
H®n
o—| Ur % Exe{o,l}" |X>x ‘0m>y

L Yoy xRy

=Y (o) + bad)x Iy)y

BCMVV’18 completeness

0% x [0™)y
07)x [0™)y
H®r
o— Uf % ZXE{O,l}" |X>X ‘0m>y
ﬁ Yxefoay 1¥x 1B(X)y
7= (o) +ba))x 1)y

/74= Xp Preimage case: x,, b «+y {0,1}

BCMVV’18 completeness

0M)x 10™)y
0M)x [0™)y
H®n
o— Uf % ZXE{O,l}" |X>X ‘0m>y
ﬁ Yxefoay 1¥x 1B(X)y
7= (o) +ba))x 1)y
H®n

/7= d Equation case: d, d - (xo ® x1) =0

BCMVV’18 soundness

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

1. Send f,\

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

1. Send f,\
2. Ask for image

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.
1. Send f,\

2. Ask for image

3. Ask for preimage

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.
1. Send f,\

2. Ask for image

3. Ask for preimage

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

1. Send f,\

2. Ask for image

3. Ask for preimage
4

. Rewind

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

> BN

Send fy

Ask for image
Ask for preimage
Rewind

Ask for equation

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

> BN

Send fy

Ask for image
Ask for preimage
Rewind

Ask for equation

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

Send f,\
Ask for image
Ask for preimage

Rewind

> BN

Ask for equation

We've constructed a poly-time algorithm that produces (y, xp, d), with
d-(xo@x)=0

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

Send f,\
Ask for image
Ask for preimage

Rewind

> BN

Ask for equation

We've constructed a poly-time algorithm that produces (y, xp, d), with
d-(xo@x)=0

Contradicts adaptive hardcore bit property!

BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

Send f,\
Ask for image
Ask for preimage

Rewind

> BN

Ask for equation

We've constructed a poly-time algorithm that produces (y, xp, d), with
d-(xo@x)=0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness
BCMVV'18 is a 4-message PoQ with ¢(\) =1 and s(\) = 3/4 + negl()\).

Observations about BCMVV’'18

e Soundness relies on the adaptive hardcore bit property of STCFs.

Observations about BCMVV’'18

e Soundness relies on the adaptive hardcore bit property of STCFs.

e STCFs implemented from LWE (believed to be quantum hard!).

Observations about BCMVV’'18

e Soundness relies on the adaptive hardcore bit property of STCFs.
e STCFs implemented from LWE (believed to be quantum hard!).

e Interaction allows for classical rewinding, but no quantum rewinding.

Observations about BCMVV’'18

Soundness relies on the adaptive hardcore bit property of STCFs.

STCFs implemented from LWE (believed to be quantum hard!).

Interaction allows for classical rewinding, but no quantum rewinding.

Protocol can be parallel-repeated to yield c(\) = 1, s(\) = negl(\).

Observations about BCMVV’'18

Soundness relies on the adaptive hardcore bit property of STCFs.

STCFs implemented from LWE (believed to be quantum hard!).

Interaction allows for classical rewinding, but no quantum rewinding.

Protocol can be parallel-repeated to yield c(\) = 1, s(\) = negl(\).

Is the adaptive hardcore bit necessary?
Can we base PoQs on just TCFs?

Observations about BCMVV’'18

Soundness relies on the adaptive hardcore bit property of STCFs.

STCFs implemented from LWE (believed to be quantum hard!).

Interaction allows for classical rewinding, but no quantum rewinding.

Protocol can be parallel-repeated to yield c(\) = 1, s(\) = negl(\).

Is the adaptive hardcore bit necessary?
Can we base PoQs on just TCFs?

Yes! By “forcing” an equation onto the prover3.

3[Kahanamoku—Meyer, Choi, Vazirani, Yao, 2021]

A 6-message PoQ (KCVY’21 protocol)

fx
ty _— >

y € /m(f)\)

10

A 6-message PoQ (KCVY’21 protocol)

10

A 6-message PoQ (KCVY’21 protocol)

f

— >
y € /m(f)\)

-—

Preimage
_—

X € f;l(y)

-—

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov() L (%))

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()

f

_—

y € /m(f)\)

2 (o) + b))

Z3(Ir - 0) o) +Ir 1))

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()

f

_—

y € /m(f)\)
r

%(|X0> + [x1))
(|- xo0) o) + I - x2))

Hadamard and measure second register

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()

_—

y € /m(f)\)

\%(|X0> + [x1))
%(|r “Xo) |X0) + |r - x1) x1))

(I x0) + (=1) Co®D)|r - x1))

N

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()
m <y {—n/4,7/4}

f

_—

y € /m(f)\)

\%(|X0> + [x1))
%(|r “Xo) |X0) + |r - x1) x1))

(I x0) + (=1) Co®D)|r - x1))

N

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()
m <y {—n/4,7/4}
{ cos (2)|0)+ sin(Z2) 1)
cos (2) 1) — sin(2)|0)

f

_—

y € /m(f)\)

\%(|X0> + [x1))
%(|r “Xo) |X0) + |r - x1) x1))

(I x0) + (=1) Co®D)|r - x1))

N

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()
m <y {—n/4,7/4}
cos (2)|0)+ sin(Z2) 1) %(|r “x0) |Xo0) + |r - x1) |x1))
{ cos (2) 1) — sin(2)|0)

2 (1) +)

J3(Ir - 30) + (1)) q))

Measure in basis m, outcome o

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()
m <y {—n/4,7/4}
{ cos (2)|0)+ sin(Z2) 1)
cos (2) 1) — sin(2)|0)

Use ty, r,d to compute likely o.

Accept if prover sends likely o.

L (1) + 1x0))
F5(Ir0) o) + Ir - xa) 1))
%(\r “Xo) + (_1)d‘(xo@x1)‘r -x1))

Measure in basis m, outcome o

10

A 6-message PoQ (KCVY’21 protocol)

r «y {0,1}Pov()
m <y {—n/4,7/4}
{ cos (2)|0)+ sin(Z2) 1) %(V “x0) [x0) +|r - x1) |x1))
cos (2) 1) — sin(2)|0))

L5(1r x0) + (~1)F 02| x,))

2 (1) + b))

Use ty, r,d to compute likely o.

Accept if prover sends likely o. Measure in basis m, outcome o

Quantum prover succeeds with probability cos?(7/8) ~ 85%

10

A 6-message PoQ (KCVY’21 protocol)

Z5(Ir - x0) + (~1)*C0 | xq)
X

A

), roxo £ rox

[1),r-xo=r-x [0),r-xo=r-x1

|=),r-xo#r-x 11

A 6-message PoQ (KCVY’21 protocol)

Z5(Ir - x0) + (~1)*C0 | xq)
X

A

), roxo £ rox

[1),r-xo=r-x

=), rxo # rex

11

KCVY’21 soundness

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks TCF claw-freeness.

1. Send £,

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

1. Send £,
2. Ask for image

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

1. Send £,
2. Ask for image
3. Ask for preimage

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

1. Send £,
2. Ask for image
3. Ask for preimage

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

1. Send £,

2. Ask for image

3. Ask for preimage
4

. Rewind

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

I A

Send f,
Ask for image
Ask for preimage

Rewind

Do Bell test with 1, m = 7 /4.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks TCF claw-freeness.

S Ol

Send f,
Ask for image
Ask for preimage

Rewind

Do Bell test with 1, m = 7 /4.

Rewind

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks TCF claw-freeness.

N s ® P

Send f,

Ask for image

Ask for preimage

Rewind

Do Bell test with 1, m = 7 /4.
Rewind

Do Bell test with 1, m = —m /4.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks TCF claw-freeness.

N s ® P

Send f,

Ask for image

Ask for preimage

Rewind

Do Bell test with 1, m = 7 /4.
Rewind

Do Bell test with 1, m = —m /4.

Repeat with r, r3, ...

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

Send f,

Ask for image
Ask for preimage
Rewind

Do Bell test with 1, m = 7 /4.

Rewind

N s ® P

Do Bell test with 1, m = —m /4.

Repeat with r, r3, ...

Outcomes 01, 0o, ... determine bits of xg P x;.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

Send f,

Ask for image
Ask for preimage
Rewind

Do Bell test with 1, m = 7 /4.

Rewind

N s ® P

Do Bell test with 1, m = —m /4.

Repeat with r, r3, ...
Outcomes 01, 0o, ... determine bits of xg P x;.

After poly-many repetitions, can decode xp & x3, 3 la Goldreich-Levin.

12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

Send f,

Ask for image
Ask for preimage
Rewind

Do Bell test with 1, m = 7 /4.

Rewind

N s ® P

Do Bell test with 1, m = —m /4.

Repeat with r, r3, ...
Outcomes 01, 0o, ... determine bits of xg P x;.
After poly-many repetitions, can decode xp & x3, 3 la Goldreich-Levin.

Can recover both preimages, which contradicts claw-freeness! 12

KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

Send f,

Ask for image

Ask for preimage

Rewind

Do Bell test with 1, m = 7 /4.

Rewind

N s ® P

Repeat with r, r3, ...

KCVY’21 proof of quantumness
KCVY'21 is a 6-message PoQ with ¢(\) = (1 + cos®(7/8)) and

-2

s(A) = 3(1 + 3/4) + negl()).

Do Bell test with 1, m = —m /4.

12

KCVY’21 removing the preimage test

Brakerski, Porat and Vidick showed that preimage test can be removed!

13

KCVY’21 removing the preimage test

Brakerski, Porat and Vidick showed that preimage test can be removed!

There's another way to do this with a simple modification...

13

KCVY’21 removing the preimage test

f
—_—
y € Im(fy)

3[Gheorghiu, Kahanamoku-Meyer]|

14

KCVY’21 removing the preimage test

f

—_—
y € Im(f))

r
_—

(|%,00..0) + [00..0, x1))

3[Gheorghiu, Kahanamoku-Meyer]|

14

KCVY’21 removing the preimage test

r +y {0,132y
m+—y {—m/4,7/4}

Use ty, r,d to compute likely o.
Accept if prover sends likely o.

3[Gheorghiu, Kahanamoku-Meyer]

(|%,00..0) + [00..0, x1))

%ﬂr - (x0,00..0)) +
(—1)4Ce®)|r . (00..0, x1)))

Measure in basis m, outcome o

14

KCVY’21 removing the preimage test

r +y {0, 1}2poly(X) %(|xo,oo..0> +100..0, x1))
m <y {=7/4 7/4}
%(|r - (x0,00..0)) +
Use ty, r,d to compute likely o. (—1)#Ce®x)|r . (00..0,x)))

Accept if prover sends likely o.
Measure in basis m, outcome o

Hardcore bit is now r - (xp||x1).

3[Gheorghiu, Kahanamoku-Meyer]|

14

KCVY’21 removing the preimage test

r +y {0, 1}2poly(X) %(|xo,oo..0> +100..0, x1))
m <y {=7/4 7/4}
%(|r - (x0,00..0)) +
Use ty, r,d to compute likely o. (—1)#Ce®x)|r . (00..0,x)))

Accept if prover sends likely o.
Measure in basis m, outcome o
Hardcore bit is now r - (xp||x1).
When doing the decoding in the soundness analysis, recover xg||x;.

3[Gheorghiu, Kahanamoku-Meyer] 14

KCVY’21 removing the preimage test

r +y {0, 1}2poly(X) %(|xo,oo..0> +100..0, x1))
m <y {=7/4 7/4}
%(|r - (x0,00..0)) +
Use ty, r,d to compute likely o. (—1)#Ce®x)|r . (00..0,x)))

Accept if prover sends likely o.
Measure in basis m, outcome o
Preimageless KCVY’21 proof of quantumness

6-message PoQ with c(\) = cos®(7/8) and s(\) = 3/4 + negl(\).

3[Gheorghiu, Kahanamoku-Meyer], [Brakerski, Porat, Vidick]

14

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

15

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

15

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

e Multiple rewindings required (compared to single rewinding in
BCMVV'18).

15

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

e Multiple rewindings required (compared to single rewinding in
BCMVV'18).

e TCFs can be constructed from multiple crypto problems
(factoring, discrete-log, ring-LWE, LWE).

15

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

e Multiple rewindings required (compared to single rewinding in
BCMVV'18).

e TCFs can be constructed from multiple crypto problems
(factoring, discrete-log, ring-LWE, LWE).

e Key point: quantum strategy in KCVY'21 with a factoring-based
TCF is much simpler than performing Shor’s algorithm!

15

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

e Multiple rewindings required (compared to single rewinding in
BCMVV'18).

e TCFs can be constructed from multiple crypto problems
(factoring, discrete-log, ring-LWE, LWE).

e Key point: quantum strategy in KCVY'21 with a factoring-based
TCF is much simpler than performing Shor’s algorithm!

e Requires “only” 2\ + 1 qubits and O(\ log(\)) gates (compared to
O()\3) gates for Shor's algorithm).

15

Observations about KCVY’'21

e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

e Multiple rewindings required (compared to single rewinding in
BCMVV'18).

e TCFs can be constructed from multiple crypto problems
(factoring, discrete-log, ring-LWE, LWE).

e Key point: quantum strategy in KCVY'21 with a factoring-based
TCF is much simpler than performing Shor’s algorithm!

e Requires “only” 2\ + 1 qubits and O(\ log(\)) gates (compared to
O()\3) gates for Shor's algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices*...

“#Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. '22.

15

Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits
(together with log-depth classical computation)

16

Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits
(together with log-depth classical computation)

[07) x T3 (o) + [x1))
10™)y 0} U, Us = y
0°)

0] — 02 03

16

Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits
(together with log-depth classical computation)

[07) x] T3 (o) + [x1))
o™y, —{ Uy Us UsH A=

Where U, U,, Us are constant-depth circuits.

16

Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits

(together with log-depth classical computation)

[0™)y Uy

0),

01

U>

ba

02

Uz

(%) + ba)

i

03

Where U, U,, Us are constant-depth circuits.

[Hirahara, Le Gall, 2021] for STCFs based on LWE.

[Liu, Gheorghiu, 2021] for TCFs and STCFs.

16

Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits

(together with log-depth classical computation)

[0™)y Uy

0),

01

U>

ba

02

Us

(%) + ba)

i

03

Where U, U,, Us are constant-depth circuits.

[Hirahara, Le Gall, 2021] for STCFs based on LWE.
[Liu, Gheorghiu, 2021] for TCFs and STCFs.

Circuit width becomes quite high O(A\®log())).

16

Non-interactive PoQs

Can we make PoQs non-interactive (2-message protocols)?

17

Non-interactive PoQs - BKVV’20

Can we make PoQs non-interactive (2-message protocols)?

Yes, in the random oracle model (ROM)?®.

5[Brakerski, Koppula, Vazirani, Vidick, 2020]

17

Non-interactive PoQs - BKVV’20

Can we make PoQs non-interactive (2-message protocols)?
Yes, in the random oracle model (ROM)?>.

ROM = Verifier and prover given access to a random function
H:{0,1}Pv™) — {0, 1}.

5[Brakerski, Koppula, Vazirani, Vidick, 2020]

17

Non-interactive PoQs - BKVV’20

Can we make PoQs non-interactive (2-message protocols)?
Yes, in the random oracle model (ROM)?>.

ROM = Verifier and prover given access to a random function
H:{0,1}Pv™) — {0, 1}.

(5

5[Brakerski, Koppula, Vazirani, Vidick, 2020]
17

Non-interactive PoQs - BKVV’20

Can we make PoQs non-interactive (2-message protocols)?
Yes, in the random oracle model (ROM)?>.

ROM = Verifier and prover given access to a random function
H:{0,1}Pv™) — {0, 1}.

(5

y € Im(f),d € {0,1}P°YN) b € {0,1}.

5[Brakerski, Koppula, Vazirani, Vidick, 2020]
17

Non-interactive PoQs - BKVV’20

Can we make PoQs non-interactive (2-message protocols)?
Yes, in the random oracle model (ROM)?>.

ROM = Verifier and prover given access to a random function
H:{0,1}Pv™) — {0, 1}.

(5

y € Im(f),d € {0,1}P°YN) b € {0,1}.

Verifier accepts if
b = d o (XO @ Xl) EB H(Xo) @ H(Xl).

5[Brakerski, Koppula, Vazirani, Vidick, 2020]
17

Non-interactive PoQs - BKVV’20

Completeness

18

Non-interactive PoQs - BKVV’20

Completeness

Prover prepares state % (10) [xo) + (—1)HOa+HE) 1) |x))

18

Non-interactive PoQs - BKVV’20

Completeness

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))
Can be done by evaluating H in superposition (in addition to fy).

18

Non-interactive PoQs - BKVV’20

Completeness

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).

b=d-(x®x1)® H(x) D H(x1).

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).

b=d-(x®x1)® H(x) D H(x1).

Soundness

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).
b=d-(x®x1)® H(x) D H(x1).

Soundness

Intractable to query both H(xo) and H(xy) (claw-freeness).

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))

Can be done by evaluating H in superposition (in addition to fy).

Measuring state in Hadamard basis yields (b, d).
b = d C (Xo @Xl) EB H(Xo) @ H(Xl).
Soundness

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) |xo) + (—1)POe)+HE) 1) |x))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).

b = d C (Xo @Xl) EB H(Xo) @ H(Xl).
Soundness

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).
b@® d - (xo @ x1) uncorrelated with H(xo) & H(x1).

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) |xo) + (—1)POe)+HE) 1) |x))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).

b = d C (Xo @Xl) EB H(Xo) @ H(Xl).
Soundness s(\) = 1 + negl(\)

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).
b@® d - (xo @ x1) uncorrelated with H(xo) & H(x1).

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).

b = d C (Xo @Xl) EB H(Xo) @ H(Xl).

Soundness s(\) = 1 + negl(\)

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).
b@® d - (xo @ x1) uncorrelated with H(xo) & H(x1).

Protocol can be parallel repeated to achieve s(\) = negl(\).

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) |xo) + (—1)POe)+HE) 1) |x))
Can be done by evaluating H in superposition (in addition to fy).
Measuring state in Hadamard basis yields (b, d).

b = d C (Xo @Xl) EB H(Xo) @ H(Xl).
Soundness s(\) = 1 + negl(\)

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).
b@® d - (xo @ x1) uncorrelated with H(xo) & H(x1).

Protocol can be parallel repeated to achieve s(\) = negl(\).

Why not use Fiat-Shamir?

18

Non-interactive PoQs - BKVV’20

Completeness c(\) =1

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))

Can be done by evaluating H in superposition (in addition to fy).

Measuring state in Hadamard basis yields (b, d).
b = d C (Xo @Xl) EB H(Xo) @ H(Xl).

Soundness s(\) = 1 + negl(\)

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).
b@® d - (xo @ x1) uncorrelated with H(xo) & H(x1).

Protocol can be parallel repeated to achieve s(\) = negl(\).
Why not use Fiat-Shamir?

BKVV'20 construction only relies on claw-freeness for soundness!
Protocol can use TCFs, rather than STCFs.

18

Non-interactive PoQs - YZ’22

Surprisingly, in ROM, it's possible to remove the use of TCFs!®

6 [Yamakawa, Zhandry, 2022]

19

Non-interactive PoQs - YZ’22

Surprisingly, in ROM, it's possible to remove the use of TCFs!®

FBPP? + FBQP?, where O is a random oracle.

6 [Yamakawa, Zhandry, 2022]

19

Non-interactive PoQs - YZ’22

Surprisingly, in ROM, it's possible to remove the use of TCFs!®

FBPP? # FBQP?, where O is a random oracle.

Verifiable Quantum
Advantage without Structure

Takashi Yamakawa (NTT Social Informatics Laboratories)
Mark Zhandry (NTT Research & Princeton University)

Verifiable Quantum Advantage Without Structure | Quantum Colloguium

5[Yamakawa, Zhandry, 2022]

19

Non-interactive PoQs - YZ’22

Let ¥ be an alphabet of size 2000
C C X" (n=poly())), be a special linear error-correcting code.
H:% — {0,1} is the random oracle.

20

Non-interactive PoQs - YZ’22

Let ¥ be an alphabet of size 20(2)

C C X" (n=poly())), be a special linear error-correcting code.

H:Y¥ — {0,1} is the random oracle.

Codeword-finding Problem (CFP)
Given a description of C (parity-check matrix), find a codeword
¢ = (c1, ¢,...ch) € C, such that H(c1) = H(e) = ...H(¢c,) = 0.

20

Non-interactive PoQs - YZ’22

Let ¥ be an alphabet of size 20(2)
C C X" (n=poly())), be a special linear error-correcting code.
H:Y¥ — {0,1} is the random oracle.

Codeword-finding Problem (CFP)
Given a description of C (parity-check matrix), find a codeword
¢ = (c1, ¢,...ch) € C, such that H(c1) = H(e) = ...H(¢c,) = 0.

20

YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

21

YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 </ < n, denote set of queries to H made by A as S;.
|Si| = poly(n).

21

YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 </ < n, denote set of queries to H made by A as S;.
|Si| = poly(n).

C is list recoverable.
There are at most 2" codewords “compatible” with queries from S;.

21

YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 </ < n, denote set of queries to H made by A as S;.
|Si| = poly(n).

C is list recoverable.

There are at most 2" codewords “compatible” with queries from S;.

From RO, probability of querying string with all 0 output is 27".

21

YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 </ < n, denote set of queries to H made by A as S;.
|Si| = poly(n).

C is list recoverable.
There are at most 2" codewords “compatible” with queries from S;.

From RO, probability of querying string with all 0 output is 27".

From a union bound, probability A finds valid codeword is
27 . 27" = negl(n).

21

YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 </ < n, denote set of queries to H made by A as S;.
|Si| = poly(n).

C is list recoverable.
There are at most 2" codewords “compatible” with queries from S;.

From RO, probability of querying string with all 0 output is 27".

From a union bound, probability A finds valid codeword is
27 . 27" = negl(n).

s(A\) = negl(N).

21

YZ’22 - Completeness

Create the states:
|9) < X cecle) IT) X 2owesn Him),.... H(wy)=0 | W)

YZ’22 - Completeness
Create the states:
|9) < D cecle) |T) o ZWGZ",H(Wl) H(w,)=0 |w)

Create the “intersection” (point-wise product) state:
|¢> X ZCEC,H(Wl),...,H(W,,):O |C>

22

YZ’22 - Completeness
Create the states:
|9) < D cecle) |T) o ZWGZ",H(Wl) H(w,)=0 |w)

Create the “intersection” (point-wise product) state:
|¢> X ZCEC,H(Wl),...,H(W,,):O |C>

Measuring |¢) yields a solution to CFP.

22

YZ’22 - Completeness
Create the states:
|§) < > cecle) |T) o ZWEZ",H(Wl),...,H(W,,):O |w)

Create the “intersection” (point-wise product) state:
1) < D cec,Hm),.... H(wn)=0 |€)

Measuring |¢) yields a solution to CFP.

Map |¢) ,|7) to Fourier domain (QFT).

22

YZ’22 - Completeness
Create the states:
|§) < > cecle) |T) o ZWGZ",H(Wl),...,H(W,,):O |w)

Create the “intersection” (point-wise product) state:
1) < D cec,Hm),.... H(wn)=0 |€)

Measuring |¢) yields a solution to CFP.

Map |¢) ,|7) to Fourier domain (QFT).

Compute convolution in Fourier domain (requires special properties of C).

22

YZ’22 - Completeness
Create the states:
|§) < > cecle) |T) o ZWGZ",H(Wl),...,H(W,,):O |w)

Create the “intersection” (point-wise product) state:
1) < D cec,Hm),.... H(wn)=0 |€)

Measuring |¢) yields a solution to CFP.

Map |¢) ,|7) to Fourier domain (QFT).

Compute convolution in Fourier domain (requires special properties of C).

QFT the result yields |¢)) (convolution theorem).

22

YZ’22 - Completeness

Create the states:
|§) < > cecle) |T) o ZWGZ",H(Wl),...,H(W,,):O |w)

Create the “intersection” (point-wise product) state:
1) < D cec,Hm),.... H(wn)=0 |€)

Measuring |¢) yields a solution to CFP.
Map |¢) ,|7) to Fourier domain (QFT).
Compute convolution in Fourier domain (requires special properties of C).
QFT the result yields |¢)) (convolution theorem).
c(A) = 1 —negl(N).

22

Observations about YZ’22

e Non-interactive PoQ in ROM.

23

Observations about YZ’22

e Non-interactive PoQ in ROM.

e Can be made into a 2-message protocol for non-uniform adversaries.

23

Observations about YZ’22

e Non-interactive PoQ in ROM.
e Can be made into a 2-message protocol for non-uniform adversaries.

e Quantum strategy involves large circuits
(comparable to Shor's algorithm).

23

Observations about YZ’22

Non-interactive PoQ in ROM.

Can be made into a 2-message protocol for non-uniform adversaries.

Quantum strategy involves large circuits
(comparable to Shor's algorithm).

Publicly verifiable (does not involve a trapdoor).

23

Observations about YZ’22

Non-interactive PoQ in ROM.

Can be made into a 2-message protocol for non-uniform adversaries.

Quantum strategy involves large circuits
(comparable to Shor's algorithm).

Publicly verifiable (does not involve a trapdoor).

Are there other PoQs that do not rely on TCFs?

23

24

KLVY’22

Non-local games can be turned into proofs of quantumness’.

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]

24

KLVY’22

Non-local games can be turned into proofs of quantumness’.

Enc(x)

Enc(a)

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]

24

KLVY’22

Non-local games can be turned into proofs of quantumness’.

LS

Enc(x)

Enc(a)

Prover performs quantum strategy of the game homomorphically.

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]

24

KLVY’22

Non-local games can be turned into proofs of quantumness’.

]| SR e G

Enc(a)

Prover performs quantum strategy of the game homomorphically.

Soundness based on security of quantum fully homomorphic encryption.

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]

KLVY’22

Non-local games can be turned into proofs of quantumness’.

]| SR e G

Enc(a)

Prover performs quantum strategy of the game homomorphically.

Soundness based on security of quantum fully homomorphic encryption.

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]

KLVY’22

Non-local games can be turned into proofs of quantumness’.

ga)- E G

Enc(a)

Prover performs quantum strategy of the game homomorphically.
Soundness based on security of quantum fully homomorphic encryption.

Ironically, QFHE constructions use TCFs®. :)

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]
8[Mahadev, 2018], [Brakerski, 2018]

KLVY’22

Non-local games can be turned into proofs of quantumness’.

] s | T

Enc(a)

Prover performs quantum strategy of the game homomorphically.
Soundness based on security of quantum fully homomorphic encryption.

Ironically, QFHE constructions use TCFs®. :)

If non-local game has quantum completeness ¢ and classical soundness s,
PoQ will have c(\) = ¢, s(\) = s + negl()).

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]
8[Mahadev, 2018], [Brakerski, 2018]

24

Observations about KLVY’22

e Not a fixed protocol but a compiler of protocols!

25

Observations about KLVY’22

e Not a fixed protocol but a compiler of protocols!

e Relates seemingly unrelated sources of quantumness
(non-rewinding, non-locality).

25

Observations about KLVY’22

e Not a fixed protocol but a compiler of protocols!

e Relates seemingly unrelated sources of quantumness
(non-rewinding, non-locality).

e QFHE can be based on Ring-LWE (no known adaptive hardcore bit).

25

Observations about KLVY’22

Not a fixed protocol but a compiler of protocols!

Relates seemingly unrelated sources of quantumness
(non-rewinding, non-locality).

e QFHE can be based on Ring-LWE (no known adaptive hardcore bit).

Implementation cost dominated by QFHE
(comparable to TCF approaches).

25

Observations about KLVY’22

Not a fixed protocol but a compiler of protocols!

Relates seemingly unrelated sources of quantumness
(non-rewinding, non-locality).

e QFHE can be based on Ring-LWE (no known adaptive hardcore bit).

Implementation cost dominated by QFHE

(comparable to TCF approaches).

e QFHE for Cliffords is efficient, but non-local games strategies use T
gates as well.

25

Observations about KLVY’22

Not a fixed protocol but a compiler of protocols!

Relates seemingly unrelated sources of quantumness
(non-rewinding, non-locality).

e QFHE can be based on Ring-LWE (no known adaptive hardcore bit).

Implementation cost dominated by QFHE

(comparable to TCF approaches).

e QFHE for Cliffords is efficient, but non-local games strategies use T
gates as well.

Efficient if QFHE with O(1) T gates is efficient!

25

Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

26

Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

¢ BCMVV - 4 messages, STCF (adaptive hardcore bit).

e KCVY - 6 messages, TCF, no preimage test.

e BKVV - 2 messages, TCF, random oracle.

e YZ -1 (or 2) message(s), random oracle, publicly verifiable.
e KLVY - 4 messages, QFHE, general compiler.

Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

BCMVV - 4 messages, STCF (adaptive hardcore bit).
KCVY - 6 messages, TCF, no preimage test.

e BKVV - 2 messages, TCF, random oracle.

YZ - 1 (or 2) message(s), random oracle, publicly verifiable.

KLVY - 4 messages, QFHE, general compiler.

(S)TCF-based constructions can have constant quantum depth prover
(+ log-depth classical computation)

26

Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

BCMVV - 4 messages, STCF (adaptive hardcore bit).
KCVY - 6 messages, TCF, no preimage test.

e BKVV - 2 messages, TCF, random oracle.

YZ - 1 (or 2) message(s), random oracle, publicly verifiable.

KLVY - 4 messages, QFHE, general compiler.

(S)TCF-based constructions can have constant quantum depth prover
(+ log-depth classical computation)

Proof-of-principle demonstration with ion-trap QC show that
interaction is in principle feasible in the near-term.

26

Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

BCMVV - 4 messages, STCF (adaptive hardcore bit).
KCVY - 6 messages, TCF, no preimage test.

e BKVV - 2 messages, TCF, random oracle.

YZ - 1 (or 2) message(s), random oracle, publicly verifiable.

KLVY - 4 messages, QFHE, general compiler.

(S)TCF-based constructions can have constant quantum depth prover
(+ log-depth classical computation)

Proof-of-principle demonstration with ion-trap QC show that
interaction is in principle feasible in the near-term.

Current estimates for quantum advantage demonstration:
~ 1000 — 2000 qubits and 10° layers of depth.

26

Open problems

1. More efficient constructions (fewer gates and qubits, short depth).

27

Open problems

1. More efficient constructions (fewer gates and qubits, short depth).
2. Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?

27

Open problems

1. More efficient constructions (fewer gates and qubits, short depth).
2. Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
3. Can BCMVV preimage test be removed®?

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

27

Open problems

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?

= ® PN

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

27

Open problems

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially

@@

higher classical overhead?

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

27

Open problems

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially

@@

higher classical overhead?
6. Other than YZ'22, can PoQs be made publicly verifiable?

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

27

Open problems

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially

AN

higher classical overhead?
Other than YZ'22, can PoQs be made publicly verifiable?
7. Better protocols (non-interactivity, public verifiability, efficiency)

S

from stronger crypto assumptions (post-quantum iO)?

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

27

Open problems

AN

S

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially
higher classical overhead?

Other than YZ'22, can PoQs be made publicly verifiable?

Better protocols (non-interactivity, public verifiability, efficiency)
from stronger crypto assumptions (post-quantum iO)?

Finer grained proofs of quantumness (proofs of quantum depth® 11).

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

10[Chia, Hung, 2022]
1 Coming soon... [Arora, Coladangelo, Coudron, Gheorghiu, Singh, Waldner]

27

Open problems

AN

S

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially
higher classical overhead?

Other than YZ'22, can PoQs be made publicly verifiable?

Better protocols (non-interactivity, public verifiability, efficiency)
from stronger crypto assumptions (post-quantum iO)?

Finer grained proofs of quantumness (proofs of quantum depth® 11).
Can we combine PoQs with other tests of quantum advantage
(sampling-based approaches)?

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

10[Chia, Hung, 2022]
1 Coming soon... [Arora, Coladangelo, Coudron, Gheorghiu, Singh, Waldner]

27

Open problems

More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially

AN

higher classical overhead?
Other than YZ'22, can PoQs be made publicly verifiable?
7. Better protocols (non-interactivity, public verifiability, efficiency)

S

from stronger crypto assumptions (post-quantum iO)?
8. Finer grained proofs of quantumness (proofs of quantum depth®? 11).
9. Can we combine PoQs with other tests of quantum advantage

(sampling-based approaches)?

Thanks!

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

10[Chia, Hung, 2022]

1 Coming soon... [Arora, Coladangelo, Coudron, Gheorghiu, Singh, Waldner]

27

