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Proof of quantumness (PoQ)

Let A € N be a security parameter. A PoQ is an interactive protocol
between a poly(\)-time classical verifier and a poly(\)-time prover,
such that

e Completeness: There exists a quantum prover that makes the
verifier accept with probability at least c(\),

e Soundness: Any classical prover makes the verifier accept with
probability at most s()),

such that ¢(\) — s(A) > 1/poly ().

Soundness is based on a computational assumption.

0Thanks to Vivian Uhlir for the figures!
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A simple 2-message PoQ

N
_—
(r',q")
SR A
e Pick random A-bit primes p, g
and compute N = p - g. e Factor N using Shor's algorithm.
e Send N to prover. e Send factors p’, ¢’ to verifier.

o Acceptif N=p'-q’.
PoQ, assuming Factoring ¢ BPP.

Can construct such PoQs from any problem, P, such that!
P € BQP, P ¢ BPP.
1Technically, want P ¢ AVBPP.
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Possible to base PoQs on some problem, P, such that P ¢ BQP.
PoQs can be based on the existence of trapdoor claw-free functions.?

Trapdoor claw-free function (TCF)
We say a family {f\ : Z — O} cn is a TCF family if:

Efficient evaluation
Poly-time algorithm that, given x € Z, computes f(x).

Two-to-one
For every y € Im(fy), there are exactly two xo, x1 € Z, fr(x0) = fr(x1) = y.

Claw-free
Intractable to find xo, x1 € Z, f(x0) = fi(x1) = y.

Trapdoor
There is a trapdoor ty and a poly-time algorithm that, given t\ and y € Im(fy)
can compute xp, x1 € Z, such that fn(xo) = fi(x1) = y.

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani '18]
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Strong trapdoor claw-free function (STCF)
We say a family {f\ : Z — O} en is @ STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y € Im(f,), x0 € Z, and d € {0, 1}*°¥™ (d # 0) such that:

d-(XoGBX1)=0,
fir(x0) = iA(x1) =y,

with probability non-negligibly greater than 1/2.

Intuition: if you know Xy you shouldn't know even a single bit of x;.
Adaptive hardcore bit implies claw-free property.
STCFs can be constructed from LWE.

TCFs can be constructed from factoring, discrete-log, Ring-LWE, LWE.
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A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fy, together with trapdoor t.
With probability 1/2.
Verifier uses t) to obtain xg, x; from y and checks the equation.

f

VS Im(f,\)

-

Equation

Verifier accepts if d - (xo @ x1) = 0, with f\(x0) = A (x1) = y.
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0M)x 10™)y
0M)x [0™)y
H®n
o— Uf % ZXE{O,l}" |X>X ‘0m>y
ﬁ Yxefoay 1¥x  1B(X)y
7= (o) +ba))x 1)y
H®n

/7= d Equation case: d, d - (xo ® x1) =0
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BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

Send f,\
Ask for image
Ask for preimage

Rewind

> BN

Ask for equation

We've constructed a poly-time algorithm that produces (y, xp, d), with
d-(xo@x)=0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness
BCMVV'18 is a 4-message PoQ with ¢(\) =1 and s(\) = 3/4 + negl()\).
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Observations about BCMVV’'18

Soundness relies on the adaptive hardcore bit property of STCFs.

STCFs implemented from LWE (believed to be quantum hard!).

Interaction allows for classical rewinding, but no quantum rewinding.

Protocol can be parallel-repeated to yield c(\) = 1, s(\) = negl(\).

Is the adaptive hardcore bit necessary?
Can we base PoQs on just TCFs?

Yes! By “forcing” an equation onto the prover3.

3[Kahanamoku—Meyer, Choi, Vazirani, Yao, 2021]
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r «y {0,1}Pov()
m <y {—n/4,7/4}
{ cos (2)|0)+ sin(Z2) 1) %(V “x0) [x0) +|r - x1) |x1))
cos (2) 1) — sin(2)|0) )

L5(1r x0) + (~1)F 02| x,))

2 (1) + b))

Use ty, r,d to compute likely o.

Accept if prover sends likely o. Measure in basis m, outcome o

Quantum prover succeeds with probability cos?(7/8) ~ 85%

10



A 6-message PoQ (KCVY’21 protocol)

Z5(Ir - x0) + (~1)*C0 | xq)
X

A

), roxo £ rox

[1),r-xo=r-x [0),r-xo=r-x1

|=),r-xo#r-x 11



A 6-message PoQ (KCVY’21 protocol)

Z5(Ir - x0) + (~1)*C0 | xq)
X

A

), roxo £ rox

[1),r-xo=r-x

=), rxo # rex
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KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.
Use it to construct poly-time algorithm that breaks TCF claw-freeness.

Send f,

Ask for image

Ask for preimage

Rewind

Do Bell test with 1, m = 7 /4.

Rewind

N s ® P

Repeat with r, r3, ...

KCVY’21 proof of quantumness
KCVY'21 is a 6-message PoQ with ¢(\) = (1 + cos®(7/8)) and

-2

s(A) = 3(1 + 3/4) + negl()).

Do Bell test with 1, m = —m /4.
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KCVY’21 removing the preimage test

Brakerski, Porat and Vidick showed that preimage test can be removed!

There's another way to do this with a simple modification...
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f
—_—
y € Im(fy)

3[Gheorghiu, Kahanamoku-Meyer]|
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KCVY’21 removing the preimage test

f

—_—
y € Im(f))

r
_—

(|%,00..0) + [00..0, x1))

3[Gheorghiu, Kahanamoku-Meyer]|
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KCVY’21 removing the preimage test

r +y {0,132y
m+—y {—m/4,7/4}

Use ty, r,d to compute likely o.
Accept if prover sends likely o.

3[Gheorghiu, Kahanamoku-Meyer]

(|%,00..0) + [00..0, x1))

%ﬂr - (x0,00..0)) +
(—1)4Ce®)|r . (00..0, x1)))

Measure in basis m, outcome o
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KCVY’21 removing the preimage test

r +y {0, 1}2poly(X) %(|xo,oo..0> +100..0, x1))
m <y {=7/4 7/4}
%(|r - (x0,00..0)) +
Use ty, r,d to compute likely o. (—1)#Ce®x)|r . (00..0,x)))

Accept if prover sends likely o.
Measure in basis m, outcome o

Hardcore bit is now r - (xp||x1).

3[Gheorghiu, Kahanamoku-Meyer]|
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r +y {0, 1}2poly(X) %(|xo,oo..0> +100..0, x1))
m <y {=7/4 7/4}
%(|r - (x0,00..0)) +
Use ty, r,d to compute likely o. (—1)#Ce®x)|r . (00..0,x)))

Accept if prover sends likely o.
Measure in basis m, outcome o
Hardcore bit is now r - (xp||x1).
When doing the decoding in the soundness analysis, recover xg||x;.

3[Gheorghiu, Kahanamoku-Meyer] 14



KCVY’21 removing the preimage test

r +y {0, 1}2poly(X) %(|xo,oo..0> +100..0, x1))
m <y {=7/4 7/4}
%(|r - (x0,00..0)) +
Use ty, r,d to compute likely o. (—1)#Ce®x)|r . (00..0,x)))

Accept if prover sends likely o.
Measure in basis m, outcome o
Preimageless KCVY’21 proof of quantumness

6-message PoQ with c(\) = cos®(7/8) and s(\) = 3/4 + negl(\).

3[Gheorghiu, Kahanamoku-Meyer], [Brakerski, Porat, Vidick]
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e Soundness relies only on claw-free property of TCFs.

e Introduces additional round of interaction, with respect to
BCMVV'18 (6 vs 4 messages).

e Multiple rewindings required (compared to single rewinding in
BCMVV'18).

e TCFs can be constructed from multiple crypto problems
(factoring, discrete-log, ring-LWE, LWE).

e Key point: quantum strategy in KCVY'21 with a factoring-based
TCF is much simpler than performing Shor’s algorithm!

e Requires “only” 2\ + 1 qubits and O(\ log(\)) gates (compared to
O()\3) gates for Shor's algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices*...

“#Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. '22.
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Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits
(together with log-depth classical computation)

[07) x ] T3 (o) + [x1))
o™y, —{ Uy Us UsH A=

Where U, U,, Us are constant-depth circuits.
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Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits

(together with log-depth classical computation)

[0™)y Uy

0),

01

U>

ba

02

Uz

(%) + ba)

i

03

Where U, U,, Us are constant-depth circuits.

[Hirahara, Le Gall, 2021] for STCFs based on LWE.

[Liu, Gheorghiu, 2021] for TCFs and STCFs.
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Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits

(together with log-depth classical computation)

[0™)y Uy

0),

01

U>

ba

02

Us

(%) + ba)

i

03

Where U, U,, Us are constant-depth circuits.

[Hirahara, Le Gall, 2021] for STCFs based on LWE.
[Liu, Gheorghiu, 2021] for TCFs and STCFs.

Circuit width becomes quite high O(A\®log())).
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Non-interactive PoQs - BKVV’20

Can we make PoQs non-interactive (2-message protocols)?
Yes, in the random oracle model (ROM)?>.

ROM = Verifier and prover given access to a random function
H:{0,1}Pv™) — {0, 1}.

(5

y € Im(f),d € {0,1}P°YN) b € {0,1}.

Verifier accepts if
b = d o (XO @ Xl) EB H(Xo) @ H(Xl).

5[Brakerski, Koppula, Vazirani, Vidick, 2020]
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Completeness c(\) =1

Prover prepares state % (10) [xo) + (—1)HCaI+HCa) |1y |xq))

Can be done by evaluating H in superposition (in addition to fy).

Measuring state in Hadamard basis yields (b, d).
b = d C (Xo @Xl) EB H(Xo) @ H(Xl).

Soundness s(\) = 1 + negl(\)

Intractable to query both H(xo) and H(xy) (claw-freeness).
At least one of H(xp), H(x1) will be uniform (ROM).
b@® d - (xo @ x1) uncorrelated with H(xo) & H(x1).

Protocol can be parallel repeated to achieve s(\) = negl(\).
Why not use Fiat-Shamir?

BKVV'20 construction only relies on claw-freeness for soundness!
Protocol can use TCFs, rather than STCFs.
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Non-interactive PoQs - YZ’22

Surprisingly, in ROM, it's possible to remove the use of TCFs!®

FBPP? # FBQP?, where O is a random oracle.

Verifiable Quantum
Advantage without Structure

Takashi Yamakawa (NTT Social Informatics Laboratories)
Mark Zhandry (NTT Research & Princeton University)

Verifiable Quantum Advantage Without Structure | Quantum Colloguium

5[Yamakawa, Zhandry, 2022]
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YZ’'22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 </ < n, denote set of queries to H made by A as S;.
|Si| = poly(n).

C is list recoverable.
There are at most 2" codewords “compatible” with queries from S;.

From RO, probability of querying string with all 0 output is 27".

From a union bound, probability A finds valid codeword is
27 . 27" = negl(n).

s(A\) = negl(N).
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YZ’22 - Completeness
Create the states:
|§) < > cecle) |T) o ZWGZ",H(Wl),...,H(W,,):O |w)

Create the “intersection” (point-wise product) state:
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Create the states:
|§) < > cecle) |T) o ZWGZ",H(Wl),...,H(W,,):O |w)

Create the “intersection” (point-wise product) state:
1) < D cec,Hm),.... H(wn)=0 |€)

Measuring |¢) yields a solution to CFP.
Map |¢) ,|7) to Fourier domain (QFT).
Compute convolution in Fourier domain (requires special properties of C).
QFT the result yields |¢)) (convolution theorem).
c(A) = 1 —negl(N).
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Observations about YZ’22

Non-interactive PoQ in ROM.

Can be made into a 2-message protocol for non-uniform adversaries.

Quantum strategy involves large circuits
(comparable to Shor's algorithm).

Publicly verifiable (does not involve a trapdoor).

Are there other PoQs that do not rely on TCFs?
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KLVY’22

Non-local games can be turned into proofs of quantumness’.

] s | T

Enc(a)

Prover performs quantum strategy of the game homomorphically.
Soundness based on security of quantum fully homomorphic encryption.

Ironically, QFHE constructions use TCFs®. :)

If non-local game has quantum completeness ¢ and classical soundness s,
PoQ will have c(\) = ¢, s(\) = s + negl()).

"[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]
8[Mahadev, 2018], [Brakerski, 2018]
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Observations about KLVY’22

Not a fixed protocol but a compiler of protocols!

Relates seemingly unrelated sources of quantumness
(non-rewinding, non-locality).

e QFHE can be based on Ring-LWE (no known adaptive hardcore bit).

Implementation cost dominated by QFHE

(comparable to TCF approaches).

e QFHE for Cliffords is efficient, but non-local games strategies use T
gates as well.

Efficient if QFHE with O(1) T gates is efficient!

25
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Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

BCMVV - 4 messages, STCF (adaptive hardcore bit).
KCVY - 6 messages, TCF, no preimage test.

e BKVV - 2 messages, TCF, random oracle.

YZ - 1 (or 2) message(s), random oracle, publicly verifiable.

KLVY - 4 messages, QFHE, general compiler.

(S)TCF-based constructions can have constant quantum depth prover
(+ log-depth classical computation)

Proof-of-principle demonstration with ion-trap QC show that
interaction is in principle feasible in the near-term.

Current estimates for quantum advantage demonstration:
~ 1000 — 2000 qubits and 10° layers of depth.
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More efficient constructions (fewer gates and qubits, short depth).
Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?
Can BCMVV preimage test be removed®?

Do TCFs that are not STCFs exist or is every TCF also a STCF?
Are there more efficient quantum constructions with potentially

AN

higher classical overhead?
Other than YZ'22, can PoQs be made publicly verifiable?
7. Better protocols (non-interactivity, public verifiability, efficiency)

S

from stronger crypto assumptions (post-quantum iO)?
8. Finer grained proofs of quantumness (proofs of quantum depth®? 11).
9. Can we combine PoQs with other tests of quantum advantage

(sampling-based approaches)?

Thanks!

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,
Mahadev, Metger, Vaikuntanathan, Wright).

10[Chia, Hung, 2022]

1 Coming soon... [Arora, Coladangelo, Coudron, Gheorghiu, Singh, Waldner]
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