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Alexandru Gheorghiu (ETH Zürich → Chalmers University of Technology)



Quantum Advantage

Quantum advantage but classically intractable to verify results.

Google, 2019.

USTC, 2021.

USTC, 2021.

USTC, 2021.

1



Quantum Advantage

Quantum advantage but classically intractable to verify results.

Google, 2019.

USTC, 2021.

USTC, 2021.

USTC, 2021.

1



Quantum Advantage

Quantum advantage but classically intractable to verify results.

Google, 2019.

USTC, 2021.

USTC, 2021.

USTC, 2021.

1



Proofs of quantumness

Soundness is based on a computational assumption.

0Thanks to Vivian Uhlir for the figures!
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Proofs of quantumness

Proof of quantumness (PoQ)

Let λ ∈ N be a security parameter. A PoQ is an interactive protocol

between a poly(λ)-time classical verifier and a poly(λ)-time prover,

such that

� Completeness: There exists a quantum prover that makes the

verifier accept with probability at least c(λ),

� Soundness: Any classical prover makes the verifier accept with

probability at most s(λ),

such that c(λ)− s(λ) > 1/poly(λ).

Soundness is based on a computational assumption.
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A simple 2-message PoQ

N

(p′, q′)

� Pick random λ-bit primes p, q

and compute N = p · q.

� Send N to prover.

� Accept if N = p′ · q′.

� Factor N using Shor’s algorithm.

� Send factors p′, q′ to verifier.

PoQ, assuming Factoring 6∈ BPP.

Can construct such PoQs from any problem, P, such that1

P ∈ BQP, P 6∈ BPP.
1Technically, want P 6∈ AVBPP.
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PoQs with more than 2 messages

Possible to base PoQs on some problem, P, such that P 6∈ BQP.

PoQs can be based on the existence of trapdoor claw-free functions.2

Trapdoor claw-free function (TCF)

We say a family {fλ : I → O}λ∈N is a TCF family if:

Efficient evaluation

Poly-time algorithm that, given x ∈ I, computes fλ(x).

Two-to-one

For every y ∈ Im(fλ), there are exactly two x0, x1 ∈ I, fλ(x0) = fλ(x1) = y .

Claw-free

Intractable to find x0, x1 ∈ I, fλ(x0) = fλ(x1) = y .

Trapdoor

There is a trapdoor tλ and a poly-time algorithm that, given tλ and y ∈ Im(fλ)

can compute x0, x1 ∈ I, such that fλ(x0) = fλ(x1) = y .

2[Brakerski, Christiano, Mahadev, Vidick, Vazirani ’18]
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PoQs with more than 2 messages

Strong trapdoor claw-free function (STCF)

We say a family {fλ : I → O}λ∈N is a STCF family if it is a TCF and:

Adaptive hardcore bit
Intractable to find y ∈ Im(fλ), x0 ∈ I, and d ∈ {0, 1}poly(λ) (d 6= 0) such that:

d · (x0 ⊕ x1) = 0,

fλ(x0) = fλ(x1) = y ,

with probability non-negligibly greater than 1/2.

Intuition: if you know x0 you shouldn’t know even a single bit of x1.

Adaptive hardcore bit implies claw-free property.

STCFs can be constructed from LWE.

TCFs can be constructed from factoring, discrete-log, Ring-LWE, LWE.

5
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A 4-message PoQ (the BCMVV’18 protocol)

Verifier generates STCF, fλ, together with trapdoor tλ.

With probability 1/2.

Verifier uses tλ to obtain x0, x1 from y and checks the equation.

tλ
fλ

y ∈ Im(fλ)

Preimage

x

Equation

d

Verifier accepts if d · (x0 ⊕ x1) = 0, with fλ(x0) = fλ(x1) = y .
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BCMVV’18 completeness

|0n〉X |0m〉Y

H⊗n

Uf

y

xb

H⊗n

d

|0n〉X |0m〉Y

1√
2n

∑
x∈{0,1}n |x〉X |0m〉Y

1√
2n

∑
x∈{0,1}n |x〉X |fλ(x)〉Y

1√
2

(|x0〉+ |x1〉)X |y〉Y
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BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).

8



BCMVV’18 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks adaptive hardcore bit.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

Equation

d

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Ask for equation

We’ve constructed a poly-time algorithm that produces (y , xb, d), with

d · (x0 ⊕ x1) = 0

Contradicts adaptive hardcore bit property!

BCMVV’18 proof of quantumness

BCMVV’18 is a 4-message PoQ with c(λ) = 1 and s(λ) = 3/4 + negl(λ).
8



Observations about BCMVV’18

� Soundness relies on the adaptive hardcore bit property of STCFs.

� STCFs implemented from LWE (believed to be quantum hard!).

� Interaction allows for classical rewinding, but no quantum rewinding.

� Protocol can be parallel-repeated to yield c(λ) = 1, s(λ) = negl(λ).

Is the adaptive hardcore bit necessary?

Can we base PoQs on just TCFs?

Yes! By “forcing” an equation onto the prover3.

3[Kahanamoku-Meyer, Choi, Vazirani, Yao, 2021]
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A 6-message PoQ (KCVY’21 protocol)

tλ
fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

r

d

m

o

r ←U {0, 1}poly(λ)

m←U {−π/4, π/4}{
cos
(
m
2

)
|0〉+ sin

(
m
2

)
|1〉

cos
(
m
2

)
|1〉− sin

(
m
2

)
|0〉

}
Use tλ, r , d to compute likely o.

Accept if prover sends likely o.

1√
2

(|x0〉+ |x1〉)

1√
2

(|r · x0〉 |x0〉+ |r · x1〉 |x1〉)

Measure in basis m, outcome o

Quantum prover succeeds with probability cos2(π/8) ≈ 85%
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A 6-message PoQ (KCVY’21 protocol)
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Z

X

|0〉 , r · x0 = r · x1|1〉 , r · x0 = r · x1

|+〉 , r · x0 6= r · x1

|−〉 , r · x0 6= r · x1

0

1

1

0

π/4

−π/4
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KCVY’21 soundness

Assume there is a poly-time classical prover that succeeds in the protocol.

Use it to construct poly-time algorithm that breaks TCF claw-freeness.

fλ

y ∈ Im(fλ)

Preimage

x ∈ f −1
λ (y)

r1

d1

m = π/4

o1

r1

d1

m = −π/4

o2

1. Send fλ

2. Ask for image

3. Ask for preimage

4. Rewind

5. Do Bell test with r1, m = π/4.

6. Rewind

7. Do Bell test with r1, m = −π/4.

Repeat with r2, r3, ...

KCVY’21 proof of quantumness

KCVY’21 is a 6-message PoQ with c(λ) = 1
2
(1 + cos2(π/8)) and

s(λ) = 1
2
(1 + 3/4) + negl(λ).
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KCVY’21 removing the preimage test

Brakerski, Porat and Vidick showed that preimage test can be removed!

There’s another way to do this with a simple modification...
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KCVY’21 removing the preimage test

tλ
fλ

y ∈ Im(fλ)

r

d

m

o

r ←U {0, 1}2poly(λ)

m←U {−π/4, π/4}

Use tλ, r , d to compute likely o.

Accept if prover sends likely o.

1√
2

(|x0〉+ |x1〉)

1√
2

(|r · (x0, 00..0)〉+

(−1)d·(x0⊕x1)|r · (00..0, x1)〉)

Measure in basis m, outcome o

3[Gheorghiu, Kahanamoku-Meyer]

, [Brakerski, Porat, Vidick]
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Measure in basis m, outcome o

Hardcore bit is now r · (x0||x1).
When doing the decoding in the soundness analysis, recover x0||x1.

3[Gheorghiu, Kahanamoku-Meyer]

, [Brakerski, Porat, Vidick]
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KCVY’21 removing the preimage test
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Measure in basis m, outcome o
Preimageless KCVY’21 proof of quantumness

6-message PoQ with c(λ) = cos2(π/8) and s(λ) = 3/4 + negl(λ).

3[Gheorghiu, Kahanamoku-Meyer], [Brakerski, Porat, Vidick] 14



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.

15



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.

15



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.

15



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.

15



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.

15



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.

15



Observations about KCVY’21

� Soundness relies only on claw-free property of TCFs.

� Introduces additional round of interaction, with respect to

BCMVV’18 (6 vs 4 messages).

� Multiple rewindings required (compared to single rewinding in

BCMVV’18).

� TCFs can be constructed from multiple crypto problems

(factoring, discrete-log, ring-LWE, LWE).

� Key point: quantum strategy in KCVY’21 with a factoring-based

TCF is much simpler than performing Shor’s algorithm!

� Requires “only” 2λ+ 1 qubits and O(λ log(λ)) gates (compared to

O(λ3) gates for Shor’s algorithm).

Potential for performing PoQs with non-fault tolerant quantum devices4...
4Interactive Protocols for Classically-Verifiable Quantum Advantage, Zhu et al. ’22.
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Constant-depth PoQs

Possible to make quantum strategy use only constant-depth circuits

(together with log-depth classical computation)

|0n〉X

|0m〉Y∣∣0k
〉
A

U1

o1

U2

o2

U3 y

1√
2

(|x0〉+ |x1〉)

o3

Where U1,U2,U3 are constant-depth circuits.

[Hirahara, Le Gall, 2021] for STCFs based on LWE.

[Liu, Gheorghiu, 2021] for TCFs and STCFs.

Circuit width becomes quite high O(λ8 log(λ)).
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Non-interactive PoQs

- BKVV’20

Can we make PoQs non-interactive (2-message protocols)?

Yes, in the random oracle model (ROM)5.

ROM = Verifier and prover given access to a random function

H : {0, 1}poly(λ) → {0, 1}.
tλ

fλ

(y , d , b)

y ∈ Im(f ), d ∈ {0, 1}poly(λ), b ∈ {0, 1}.

Verifier accepts if

b = d · (x0 ⊕ x1)⊕ H(x0)⊕ H(x1).

5[Brakerski, Koppula, Vazirani, Vidick, 2020]
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Non-interactive PoQs - BKVV’20

Completeness

c(λ) = 1

Prover prepares state 1√
2

(
|0〉 |x0〉+ (−1)H(x0)+H(x1) |1〉 |x1〉

)

Can be done by evaluating H in superposition (in addition to fλ).

Measuring state in Hadamard basis yields (b, d).

b = d · (x0 ⊕ x1)⊕ H(x0)⊕ H(x1).

Soundness

s(λ) = 1
2 + negl(λ)

Intractable to query both H(x0) and H(x1) (claw-freeness).

At least one of H(x0),H(x1) will be uniform (ROM).

b ⊕ d · (x0 ⊕ x1) uncorrelated with H(x0)⊕ H(x1).

Protocol can be parallel repeated to achieve s(λ) = negl(λ).

Why not use Fiat-Shamir?

BKVV’20 construction only relies on claw-freeness for soundness!

Protocol can use TCFs, rather than STCFs.

18
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Non-interactive PoQs - YZ’22

Surprisingly, in ROM, it’s possible to remove the use of TCFs!6

FBPPO 6= FBQPO , where O is a random oracle.

6[Yamakawa, Zhandry, 2022]
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Non-interactive PoQs - YZ’22

Let Σ be an alphabet of size 2Θ(λ),

C ⊆ Σn (n = poly(λ)), be a special linear error-correcting code.

H : Σ→ {0, 1} is the random oracle.

Codeword-finding Problem (CFP)

Given a description of C (parity-check matrix), find a codeword

c = (c1, c2, ...cn) ∈ C , such that H(c1) = H(c2) = ...H(cn) = 0.

(c1, ..., cn) ∈ C ,H(ci ) = 0

20
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YZ’22 - Soundness

Consider a poly-time algorithm A for CFP.

For each 1 ≤ i ≤ n, denote set of queries to H made by A as Si .

|Si | = poly(n).

C is list recoverable.

There are at most 2nε codewords “compatible” with queries from Si .

From RO, probability of querying string with all 0 output is 2−n.

From a union bound, probability A finds valid codeword is

2nε · 2−n = negl(n).

s(λ) = negl(λ).

21
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YZ’22 - Completeness

Create the states:

|φ〉 ∝
∑

c∈C |c〉 |τ〉 ∝
∑

w∈Σn,H(w1),...,H(wn)=0 |w〉

Create the “intersection” (point-wise product) state:

|ψ〉 ∝
∑

c∈C ,H(w1),...,H(wn)=0 |c〉

Measuring |ψ〉 yields a solution to CFP.

Map |φ〉 , |τ〉 to Fourier domain (QFT).

Compute convolution in Fourier domain (requires special properties of C ).

QFT the result yields |ψ〉 (convolution theorem).

c(λ) = 1− negl(λ).
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Observations about YZ’22

� Non-interactive PoQ in ROM.

� Can be made into a 2-message protocol for non-uniform adversaries.

� Quantum strategy involves large circuits

(comparable to Shor’s algorithm).

� Publicly verifiable (does not involve a trapdoor).

Are there other PoQs that do not rely on TCFs?
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KLVY’22

Non-local games can be turned into proofs of quantumness7.

1√
2

(|00〉+ |11〉)

x y
a b

→

Enc(x)

Enc(a)

y

b

Prover performs quantum strategy of the game homomorphically.

Soundness based on security of quantum fully homomorphic encryption.

Ironically, QFHE constructions use TCFs8. :)

If non-local game has quantum completeness c and classical soundness s,

PoQ will have c(λ) = c , s(λ) = s + negl(λ).

7[Kalai, Lombardi, Vaikuntanathan, Yang, 2022]
8[Mahadev, 2018], [Brakerski, 2018]
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Observations about KLVY’22

� Not a fixed protocol but a compiler of protocols!

� Relates seemingly unrelated sources of quantumness

(non-rewinding, non-locality).

� QFHE can be based on Ring-LWE (no known adaptive hardcore bit).

� Implementation cost dominated by QFHE

(comparable to TCF approaches).

� QFHE for Cliffords is efficient, but non-local games strategies use T

gates as well.

� Efficient if QFHE with O(1) T gates is efficient!
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Proofs of quantumness summary

Efficient interactive protocols for classically verifiable quantum advantage.

� BCMVV - 4 messages, STCF (adaptive hardcore bit).

� KCVY - 6 messages, TCF, no preimage test.

� BKVV - 2 messages, TCF, random oracle.

� YZ - 1 (or 2) message(s), random oracle, publicly verifiable.

� KLVY - 4 messages, QFHE, general compiler.

(S)TCF-based constructions can have constant quantum depth prover

(+ log-depth classical computation)

Proof-of-principle demonstration with ion-trap QC show that

interaction is in principle feasible in the near-term.

Current estimates for quantum advantage demonstration:

∼ 1000− 2000 qubits and 105 layers of depth.
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Open problems

1. More efficient constructions (fewer gates and qubits, short depth).

2. Elliptic-curve-based TCF (more efficient than Shor’s algorithm)?

3. Can BCMVV preimage test be removed9?

4. Do TCFs that are not STCFs exist or is every TCF also a STCF?

5. Are there more efficient quantum constructions with potentially

higher classical overhead?

6. Other than YZ’22, can PoQs be made publicly verifiable?

7. Better protocols (non-interactivity, public verifiability, efficiency)

from stronger crypto assumptions (post-quantum iO)?

8. Finer grained proofs of quantumness (proofs of quantum depth10 11).

9. Can we combine PoQs with other tests of quantum advantage

(sampling-based approaches)?

Thanks!

9Maybe, with non-falsifiable assumptions (based on discussions with Brakerski,

Mahadev, Metger, Vaikuntanathan, Wright).
10[Chia, Hung, 2022]
11Coming soon... [Arora, Coladangelo, Coudron, Gheorghiu, Singh, Waldner]
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