
Quantum computing: algorithms and complexity

Assignment 1

Due: 01.04.2023, 23:59

Problem 1 (Useful identities)

Recall some of the main unitary gates we encountered in the lectures:

I =

[
1 0

0 1

]
X =

[
0 1

1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0

0 −1

]
H =

1√
2

[
1 1

1 −1

]
T =

[
1 0

0 eiπ/4

]

and

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


As circuits, these take the following form:

X Y Z H T

A. Prove the following relations:

1. H = 1√
2
(X + Z).

2. HXH = Z,HY H = −Y,HZH = X.

3. XZ = −ZX, XY = −Y X, ZY = −Y Z.

4. TZ = ZT.
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5. (X ⊗X)CNOT = CNOT (X ⊗ I) and (I ⊗X)CNOT = CNOT (I ⊗X).

Hint: for this, it’s easier to use the actions of CNOT and X on the computational basis states, rather

than the matrix representations.

B. Now consider the controlled-Z operation, which applies a Z gate to the second qubit, conditioned on

the first qubit being in a |1⟩ state:

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


In circuit form, we represent CZ in one of two ways:

Z

Notice that in the second picture the gate looks symmetrical, in the sense that there aren’t obvious control

and target qubits (unlike the first picture, where the top qubit is the control qubit and the bottom is the

target qubit). Indeed, you will have to show that CZ is symmetrical.

Start by first showing, using the matrix representation, that

CZ |00⟩ = |00⟩ CZ |01⟩ = |01⟩ CZ |10⟩ = |10⟩ CZ |11⟩ = − |11⟩ .

For controlled gates, let us introduce the notation CZ1,2 (or CNOT1,2, respectively) to indicate that qubit

1 is the control qubit and qubit 2 is the target qubit. That is to say, CZ1,2 means “controlled on qubit 1

being |1⟩, apply a Z gate to qubit 2.” Prove the following relations:

1. CZ1,2 = CZ2,1 (CZ is symmetric under qubit swapping). In circuit form, we have:

Z =

Z

2. CNOT1,2 ̸= CNOT2,1. For this it suffices to show that there’s at least one state |ψ⟩ such that

CNOT1,2 |ψ⟩ ≠ CNOT2,1 |ψ⟩ .

3. (I ⊗H)CZ1,2(I ⊗H) = CNOT1,2.

4. (H ⊗H)CNOT1,2(H ⊗H) = CNOT2,1.
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Problem 2 (States and unitaries)

A. Express the 2-qubit Bell state |Φ+⟩ = 1√
2
(|00⟩ + |11⟩) in the (|++⟩ , |+−⟩ , |−+⟩ , |−−⟩) basis, where

recall that |±⟩ = 1√
2
(|0⟩ ± |1⟩). Next, express the 3-qubit GHZ state |GHZ⟩ = 1√

2
(|000⟩ + |111⟩) in the

(|+++⟩ , |++−⟩ , ... |− − −⟩) basis.

B. Compute CNOT |++⟩. Is this state a product state? I.e., can it be expressed as |ψ⟩ ⊗ |ϕ⟩ for some

|ψ⟩ = a |0⟩+ b |1⟩, |ϕ⟩ = c |0⟩+ d |1⟩?

C. Compute CZ |++⟩. Is this state a product state?

D. For |ψ⟩ = a |0⟩ + b |1⟩, compute CNOT |ψ⟩ |−⟩. Is this state a product state? You should notice that

the relative phase of the first qubit changes as a result of the CNOT operation (even though, intuitively,

the control qubit should remain unchanged). This is called the phase kickback effect and is an important

part of certain quantum algorithms.

E. Show that CNOT1,2 CNOT2,1 CNOT1,2 (|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩ , where |ψ⟩ and |ϕ⟩ are single-qubit

states. In circuit form, you have to show the following:

|ψ⟩ |ϕ⟩

|ϕ⟩ |ψ⟩

This operation is referred to as SWAP and is sometimes promoted to the status of a fundamental gate,

represented as:

Hint: Since every unitary is fully determined by its action on a basis, consider the action of that circuit

on the computational basis (|00⟩ , |01⟩ , |10⟩ , |11⟩).

F. Which 2-qubit unitary (expressed in terms of the elementary gates we’ve seen so far) performs the

mapping:

|00⟩ → |00⟩ |01⟩ → − |01⟩ |10⟩ → − |10⟩ |11⟩ → |11⟩?

What about:

|00⟩ → |00⟩ |01⟩ → |01⟩ |10⟩ → |11⟩ |11⟩ → − |10⟩?
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Problem 3 (Fun with Hadamard)

Recall the action of the Hadamard gate on the computational basis: H |0⟩ = |+⟩ and H |1⟩ = |−⟩.
We used H ⊗ H to denote the 2-qubit gate which consists of Hadamard acting on the first qubit and

on the second qubit. We typically write this in the more compact form H⊗2 = H ⊗ H. In general,

H⊗n = H⊗H⊗ ...⊗H, denotes n Hadamard gates acting in parallel on n qubits. This notation also applies

to states. For instance |0⟩⊗2
= |0⟩⊗|0⟩ = |00⟩ . In general, |0⟩⊗n = |00..0⟩. The latter state is also sometimes

denoted |0n⟩ .

A. Show that H⊗2 |00⟩ = 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩). Generalize this by showing that:

H⊗n |0n⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ .

Here, |x⟩ is the computational basis state associated to the n-bit string x. In circuit form, we write:

n|0n⟩ H⊗n 1√
2n

∑
x∈{0,1}n |x⟩

B. For b ∈ {0, 1}, we can compactly write the action of Hadamard on the computational basis states as:

H |b⟩ = 1√
2
(|0⟩+ (−1)b |1⟩).

Generalize this by showing:

H⊗n |x⟩ = 1√
2n

∑
y∈{0,1}n

(−1)x·y |y⟩ . (1)

This is an extremely useful relation which will come up a number of times in the lectures.

Here, x·y denotes the modulo 2 inner product between x and y as vectors of bits. That is, if x = x1x2...xn

and y = y1y2...yn, with xi, yi ∈ {0, 1}, then

x · y =

n∑
i=1

xiyi mod 2.

Equivalently,

x · y = x1y1 ⊕ x2y2 ⊕ ...⊕ xnyn,

since the xor operation ⊕ is addition modulo 2.

Hint: To show Equation 1, start by showing the n = 2 case to get a feel for what the relation is saying.

You can then prove the general statement by induction.

Problem 4 (Quantum circuits)

A. Compute the output quantum state for each of the following circuits:
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|0⟩ H Z

|0⟩ Z

|0⟩ H H

|0⟩ H H

|0⟩ H

|0⟩ H

|1⟩ H

|0⟩ H T

|0⟩ T † H

Where T † is the inverse of T .

B. Using only gates from the set {X,H, T,CNOT}, write circuits for the following operations:1

1. T †. Note that while T is part of the set, T † is not, so you have to somehow express it in terms of the

operations in the set. Hint: T 8 = I.

2. The unitary performing the mapping |x⟩ |y⟩ |z⟩ → |y⟩ |x⟩ |x⊕ y ⊕ z⟩, where x, y, z ∈ {0, 1}.

3. The unitary which maps the computational basis to the eigenbasis of Y . That is |0⟩ → 1√
2
(|0⟩+ i |1⟩),

|1⟩ → 1√
2
(|0⟩ − i |1⟩).

4. Any unitary that maps |0000⟩ → 1√
2
(|0011⟩+ |1100⟩).

Problem 5 (Measurements)

A. Recall that a (projective) measurement is specified by a collection of projectors, {Pi}ki=1, where P
2
i = Pi,

PiPj = 0 (for i ̸= j) and
∑k
i=1 Pi = I. Show that the following projectors constitute a valid projective

measurement:

P0 = |00⟩ ⟨00|+ |11⟩ ⟨11| P1 = |01⟩ ⟨01|+ |10⟩ ⟨10| . (2)

1You can implicitly also use the identity operation, I, which just means no gate.
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Mathematically, projectors define a plane (or hyperplane) in Hilbert space onto which a state is projected

when a measurement is performed. In this case, the measurement is referred to as the parity measurement.

This is because P0 projects onto the plane spanned by |00⟩ and |11⟩, the strings with parity 0,2 while P1

projects onto the plane spanned by the strings of parity 1.

B. Recall that performing the measurement M = {Pi}ki=1 on some state |ψ⟩, will yield outcome i with

probability ⟨ψ|Pi |ψ⟩, and the state after the measurement is Pi|ψ⟩√
⟨ψ|Pi|ψ⟩

. This is referred to as the post-

measurement state.

What are the two possible post-measurement states when the state |++⟩ = 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩) is

measured with the measurement from Equation 2. What are the probabilities for the 2 possible outcomes?

What about for the state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩)?

C. Recall that a measurement of a single qubit in the computational basis is given by the projectors:

P0 = |0⟩ ⟨0| P1 = |1⟩ ⟨1| .

In circuit form, a computational basis measurement is represented as:

If we’d like to measure a single qubit (in the computational basis) from a multi-qubit state, the cor-

responding projectors are obtained by tensoring with identity operations on the unmeasured qubits. For

instance, if we want to measure the first qubit of a 3-qubit state, the corresponding projectors would be:

P0 = |0⟩ ⟨0| ⊗ I ⊗ I P1 = |1⟩ ⟨1| ⊗ I ⊗ I.

What are the possible post-measurement states (and the probabilities for each) when measuring the first

qubit of the GHZ state |GHZ⟩ = 1√
2
(|000⟩+ |111⟩)? What about for |W ⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩)?

D. Is there a way to perform the parity measurement from Equation 2 using only a computational basis

measurement? The answer is yes, and the idea is to simply compute the parity of the state into an extra

qubit and then measure that qubit in the computational basis. Show that this is indeed the case by proving

that the following circuit performs a parity measurement on the 2-qubit state |ψ⟩.

|ψ⟩

|0⟩

2The parity of a bitstring x is simply the sum, modulo 2, of its bits. In other words, Parity(x) = x1 ⊕ x2 ⊕ ... ⊕ xn. It’s
clear that 0⊕ 0 = 1⊕ 1 = 0, so that 00 and 11 are strings of parity 0.
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In other words, show that when the bottom qubit is measured as being 0, the state |ψ⟩ is projected to
P0|ψ⟩√
⟨ψ|P0|ψ⟩

and, similarly, for outcome 1 we have projection onto P1|ψ⟩√
⟨ψ|P1|ψ⟩

, where here P0 and P1 are the

ones from Equation 2. You should assume here that |ψ⟩ is an arbitrary 2 qubit state, |ψ⟩ = a |00⟩+ b |01⟩+
c |10⟩+ d |11⟩ .

E. Consider measuring a qubit in the (|+⟩ , |−⟩) basis. Write the projectors for this measurement. Compute

the post-measurement states (and probabilities) for a (|+⟩ , |−⟩)-basis measurement of the (first qubit of the)

|GHZ⟩ and |W ⟩ states.

F. In analogy to the parity measurement, we can also define a phase parity measurement with the projec-

tors:

P+ = |++⟩ ⟨++|+ |−−⟩ ⟨−−| P− = |+−⟩ ⟨+−|+ |−+⟩ ⟨−+| .

As in D, give a circuit which implements the phase parity measurement using a single-qubit computational

basis measurement.
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