
Quantum computing: algorithms and complexity
Assignment 2

Due: 22.04.2023, 23:59

Problem 1 (The quantum SWAP test)

Suppose we have two n-qubit quantum states |ψ〉 and |φ〉 and would like to test whether they are close to
each other or far apart. By this we mean that we would like to know whether | 〈ψ|φ〉 |2 is close to 1 or close
to 0. One way to do this is with the quantum SWAP test given by the following circuit:

|0〉 H H

|ψ〉

|φ〉

The operation in the middle is a controlled-SWAP, or CSWAP , operation. It swaps the bottom two
registers whenever the control qubit is in the |1〉 state. Formally:

|0〉 |ψ〉 |φ〉 CSWAP−−−−−−→ |0〉 |ψ〉 |φ〉 |1〉 |ψ〉 |φ〉 CSWAP−−−−−−→ |1〉 |φ〉 |ψ〉

A. For the case when |ψ〉 and |φ〉 are single-qubit states, the CSWAP operation is a 3-qubit operation.
Give a circuit that performs CSWAP using only CCNOT (or Toffoli) gates. Hint: Recall from Assignment
1 how SWAP can be performed in terms of CNOT gates.

B. Compute the probability of the top qubit being measured as |0〉 in the quantum SWAP test circuit given
above. You should express this probability in terms of | 〈ψ|φ〉 |2. What is the probability when |ψ〉 = |φ〉?
What about when the states are orthogonal?

C. Write what the post-measurement state will be for the bottom two registers, when the top qubit is
measured as |0〉 and as |1〉, respectively.
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Problem 2 (Deutsch-Jozsa)

In the lectures, we’ve seen a number of problems where quantum computers offer an advantage in terms
of query complexity over classical computers. Here we’ll consider another such problem, though, as you’ll
show, it only provides an advantage against deterministic classical algorithms.

Suppose we are given access to a function f : {0, 1}n → {0, 1}, which is promised to be either constant
or balanced. Constant means that the function is either f(x) = 0, for all x ∈ {0, 1}n, or f(x) = 1, for all
x ∈ {0, 1}n. Balanced means that the function is 0 on half of the inputs and 1 on the other half. In other
words, there are sets S0, S1 ⊂ {0, 1}n such that |S0| = |S1| = 2n−1, S0 ∩S1 = ∅ and for any x ∈ S0, f(x) = 0

and for any x ∈ S1, f(x) = 1.

A. Argue that any deterministic classical algorithm requires 2n−1 + 1 queries to f in order to determine
whether it is constant or balanced. In other words, D(DJ) = 2n−1 + 1.

B. Consider the following quantum circuit:

n|0n〉 H⊗n Uf H⊗n

Here, Uf is the phase oracle for f , so that Uf |x〉 = (−1)f(x) |x〉. What is the probability that the output
of the circuit is measured as |0n〉 when the function is constant? What about when the function is balanced?
Justify your answers. This shows that Q(DJ) = 1.

C. Give an efficient randomized classical algorithm that correctly decides whether the function is constant
or balanced, with probability at least 99%. This shows that R(DJ) = O(1).

Problem 3 (Recursive Fourier Sampling)

In the lectures, we talked about how the Bernstein-Vazirani (BV) problem gives a separation in query
complexity between quantum and classical algorithms with Q(BV) = 1, R(BV) = n. In this problem, we
will consider the generalization of BV, known as Recursive Fourier Sampling (RFS).

First, we will consider a decision version of BV. Recall that in BV you are given oracle access to a
function f(x) = x · s, for some secret s ∈ {0, 1}n, and the goal is to find s. In the decision version you are
asked to find a hardcore bit of s. A hardcore bit (or hardcore predicate) is some function, denoted h, such
that s 7→ h(s) is as hard to compute as s itself. An example is the following:

h(s) =

{
0, if |s| mod 3 = 0

1, otherwise

where |s| denotes the Hamming weight of s. The decision version of BV is: given oracle access to f , output
h(s). Clearly, this can be solved by first finding s and then applying h on it. We refer to this as RFS1, the
1-level version of RFS, which is just BV.
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Next, let’s consider a 2-level version, RFS2. Suppose we’re given access to f : {0, 1}n × {0, 1}n → {0, 1},
such that:

f(x, y) = sx · y,

where the strings sx ∈ {0, 1}n are chosen so that h(sx) = s · x, for some s ∈ {0, 1}n. The task is again to
output h(s) (which requires finding s itself).

Why is this a 2-level version of BV (or RFS1)? If we fix x, f(x, y) = sx · y is a BV function with secret
sx. Suppose we solve this instance of BV and recover sx. If we then compute h(sx) we obtain the bit s · x,
for the x fixed in the beginning. Taking x to be successively 00..01, 00..10, ..., 01..00, 10..00, we would then
be able to recover the bits of s. But note that for each value of x, we have to solve an instance of BV. As
R(BV) = n, we find that R(RFS2) = n2.

A. Write a quantum circuit that solves RFS2 using 2 queries to the phase oracle Uf |x〉 |y〉 = (−1)sx·y |x〉 |y〉.
Note that you can also assume that you have a unitary1 for computing h, i.e. Uh |s〉 |z〉 = |s〉 |z ⊕ h(s)〉 .

B. We will now consider RFSk to be the k-level version of BV. In this case, we are given oracle access to
f : {0, 1}n×k → {0, 1},

f(x1, x2, ... xk) = sx1,... xk−1
· xk,

where sx1,... xk−1
∈ {0, 1}n are chosen such that

h(sx1,... xk−1
) = sx1,... xk−2

· xk−1.

Similarly, sx1,... xk−2
∈ {0, 1}n are chosen such that

h(sx1,... xk−2
) = sx1,... xk−3

· xk−2,

and so on, until sx1
∈ {0, 1}n are chosen such that

h(x1) = s · x1.

for some secret s ∈ {0, 1}n. The task is to output h(s).
Give a classical algorithm for solving this problem, making nk queries to the oracle. While you’re not

required to prove this, it turns out that this algorithm is optimal in the classical case (for both deterministic
and randomized strategies).

C. Give a quantum algorithm for solving RFSk, that makes 2k−1 queries to the phase oracle:

Uf |x1, x2, ... xk〉 = (−1)sx1,... xk−1
·xk |x1, x2, ... xk〉 .

Taking k = log n will then yield a suprapolynomial separation in query complexity between quantum and
classical algorithms, as R(RFSlog) = Ω(nlogn) while Q(RFSlog) = O(n).

1Also note that this is not an oracle since, unlike f , h is given to us explicitly, so we can implement it as a quantum circuit.
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Problem 4 (Forrelation)

So far, the biggest query complexity separation we have seen between quantum and classical was given by
Simon’s problem (or any general period finding problem) where we found that Q(Simon) = O(n), whereas
R(Simon) = 2Ω(n). Can we do better? In particular, can we define a problem which has O(1) quantum query
complexity but 2Ω(n) randomized query complexity? The answer is yes and comes in the form of a problem
called Forrelation.

We are given oracle access to two functions f, g : {0, 1}n → {0, 1}. We are promised that either f is
strongly correlated with the Zn

2 Fourier transform of g, or f has almost no correlation with the Fourier
transform of g. The task is to decide which of these two is the case.

To be more precise, the Zn
2 Fourier transform of g is defined as

ĝ(x) =
1

2n/2

∑
y∈{0,1}n

(−1)x·y(−1)g(y)

Note that ĝ : {0, 1}n → R. What does it mean to say that f is correlated with ĝ? Informally, it simply
means that f(x) = 1 for inputs x for which ĝ(x) is large and f(x) = 0 whenever ĝ(x) is small. More formally,
we define the quantity

Φ(f, g) =
1

23n/2

∑
x,y∈{0,1}n

(−1)f(x)(−1)x·y(−1)g(y)

called the forrelator. We say that f and g are forrelated if, say, |Φ| ≥ 0.5 and not forrelated if |Φ| ≤ 0.01

and we are promised that the functions are chosen such that one of these two is the case.2

It is known that R(Forrelation) = 2Ω(n), so that any classical algorithm attemping to solve this problem
would require exponentially many queries to the oracles for f and g. Your task is to show that there is a
quantum algorithm which can solve Forrelation with just O(1) queries.

A. To get a feel for the problem, consider the case n = 2. Take g to be the constant 0 function, so g(x) = 0,
for all x. Compute ĝ(x) for all x. Find a function f that is maximally forrelated with g and one that is
minimally forrelated. In both cases, compute Φ(f, g). Do the same for the case where g is a non-constant
(and also non-balanced) function.

B. Before tackling Forrelation, let’s solve a related problem called Fourier Fishing. Give a quantum
circuit acting on n qubits, that makes exactly one query to the phase oracle for g (and no queries to f)
and for which the output of the circuit is measured in the computational basis. It should be that the
probability of measuring output |x〉 is exactly |ĝ(x)|2. In other words, the circuit is sampling strings x
with probabilities given by the squared Fourier spectrum of g. Incidentally, this can also be shown to be
classically hard (requiring exponentially many queries to g). Justify why your circuit achieves the intended
output probabilities.

C. We are now ready to solve Forrelation. Give a quantum circuit acting on n qubits, whose output is
measured in the computational basis and for which the probability of seeing the outcome |0n〉 is |Φ(f, g)|2.

2The constants here are somewhat arbitrary. The point is that in one case the forrelator significantly larger than in the other
case.
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The circuit should make O(1) queries to the phase oracles for f and g. Justify why your circuit achieves the
intended output probability for |0n〉.

D. Now suppose you are given access to an oracle that performs the mapping

U |b〉 |x〉 = [(1− b)(−1)f(x) + b(−1)g(x)] |b〉 |x〉

In other words, if |b〉 = |0〉, it applies a phase of (−1)f(x) to the state and if |b〉 = |1〉 it applies a phase
of (−1)g(x) to the state. Give a quantum circuit that makes exactly one query to U and for which the
probability of obtaining a zero output (say, even by meausuring a single qubit) is exactly 1

2 (1 + Φ(f, g)).
Justify your answer.

Hint: The quantum SWAP test. Note also that you are allowed to perform controlled versions of
unitaries we’ve seen so far.

Problem 5 (The Quantum Fourier Transform)

We’ve seen that a crucial component in Shor’s algorithm is the quantum Fourier transform (QFT). The QFT
acting on n qubits is defined as the unitary:

QFTn |x〉 =
1

2n/2

2n−1∑
y=0

ωxy
n |y〉 (1)

where ωn = exp
(
2πi
2n

)
is a root of unity of order 2n. The notation is slightly different from what we used in

the lectures—technically the QFT can be defined on any M -dimensional Hilbert space, however we are only
interested in 2n-dimensional spaces, so everything is indexed with n. Note that we are treating x and y as
integers, rather than n-bit strings (the states represent binary encodings of those integers).

We’re going to see how the QFT can be implemented from elementary gates. To do whis, we will make
use of the unitary:

Rn =

[
1 0

0 ωn

]

This is simply a rotation around the Z axis (of the Bloch sphere) by an angle of 2πi
2n . Note that for n = 3,

this becomes the familiar T gate. From the Solovay-Kitaev theorem, we know that Rn can be approximated
to within arbitrary precision using (at most poly(n)) H and T gates. We will thereofre assume that the Rn

gate is a fundamental gate that we can use, in addition to its controlled version CRn, which performs the
mapping:

CRn |x〉 |y〉 = ωxy
n |x〉 |y〉

where here x, y ∈ {0, 1}.
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A. We’ll first consider the 2-qubit QFT2:

QFT2 |x〉 =
1

2

3∑
y=0

exp

(
2πi xy

4

)
|y〉 = 1

2
(|00〉+ ix |01〉+ (−1)x |10〉+ (−i)x |11〉)

Show that the following circuit implements QFT2:

|x1〉 H R2

|x2〉 H

where |x〉 = |x1, x2〉 (x1 and x2 are the bits of x).

B. Notice that the output of the previous circuit is a product state:

QFT2 |x1, x2〉 =
1

2
(|0〉+ (−1)x2 |1〉)⊗ (|0〉+ (−1)x1 ix2 |1〉)

Using the notation [0.x1x2...xn] =
∑n

k=1 xk2
−k and the definition of QFTn from Equation 1, show that:

QFTn |x1, x2, ...xn〉 =
1

N
(|0〉+ e2πi[0.xn] |1〉)⊗ (|0〉+ e2πi[0.xn−1xn] |1〉)⊗ ...⊗ (|0〉+ e2πi[0.x1x2...xn] |1〉) (2)

Hint: In Equation 1, when writing ωxy
n , we are treating x and y as integers. As an integer, x expressed in

terms of its bits is simply
∑n

k=1 xk2
n−k.

C. Using Equation 2, show that QFTn can be implemented by the following circuit:

· · ·

· · · · · · · · ·

...
...

...

· · · · · ·

· · ·

|x1〉 H R2 Rn−1 Rn

|x2〉 H Rn−2 Rn−1

...

|xn−1〉 H R2

|xn〉 H

Note that the order of the qubits is reversed. So, strictly speaking, for QFTn, we would also perform
n/2 SWAP gates at the end of the circuit to reverse the order of the qubits.
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