
Quantum computing: algorithms and complexity
Assignment 3

Due: 17.05.2023, 23:59

For this assignment you need to recall the precise definitions of a number of complexity classes we
considered in the lectures. Except for Problem 5, we will restrict to the case of decision classes. You can find
definitions for all of them here: https://complexityzoo.net/Complexity_Zoo. You should also consult
the course references, in particular the book of Arora and Barak (AB07) and the lecture notes of Ronald
de Wolf (W19) and Scott Aaronson (A10). For some of the problems, the solutions can be found in those
lecture notes. You are free to consult them if you get stuck, but you should write the proofs in your own
words.

Problem 1 (Relations between complexity classes)

In this problem, for all BQP computations you can assume that the YES outcome is given either by measuring
a single qubit in the |0〉 state (or alternatively the |1〉 state, depending on which labelling we choose),
or measuring the entire the output quantum state of the circuit in the |0n〉 state and any other output
corresponds to a NO outcome. You can choose whichever of these two is more convenient.1

A. BQP ⊆ PP. Recall that in the lectures we showed that BQP ⊆ PSPACE by using the Feynman sum-
over-paths approach to express the amplitude for a YES outcome 〈0n|C |x〉 as a sum over the amplitudes of
exponentially many computational paths. Specifically, if C = UTUT−1...U1, where the Ui’s are elementary
gates, we have:

〈0n|C |x〉 =
∑

z1,z2,...zT−1∈{0,1}n
〈0n|UT |zT−1〉 〈zT−1|UT−1 |zT−2〉 ... 〈z1|U1 |x〉 . (1)

Crucially, each term in the sum can be computed in polynomial time and space (given C and x) and the
whole sum can be computed in polynomial space.

We also argued that a similar approach would show that BQP ⊆ PPP. Strengthen this result by showing
the containment BQP ⊆ PP. For this, you can assume that the circuit consists only of Hadamard and

1And you should convince yourself that they are equivalent. In other words, if the acceptance condition of the circuit is
decided by the measurement of a single qubit, one can give an equivalent circuit for which the acceptance condition is decided
by measuring the entire output as |0n〉. And vice versa.

1

https://complexityzoo.net/Complexity_Zoo
https://complexityzoo.net/Complexity_Zoo

CCNOT (Toffoli) gates. This is, in fact, without loss of generality, as H and CCNOT can be shown to be
universal for quantum computation.2

B. BQPSPACE = PSPACE. We define BQPSPACE to consist of all decision problems that can be solved by
(uniform) quantum circuits using at most a polynomial number of qubits (but potentially exponential time).
It’s clear that PSPACE ⊆ BQPSPACE. Show that BQPSPACE ⊆ PSPACE, therefore BQPSPACE = PSPACE.
In other words, quantum computers cannot offer an exponential advantage in terms of space usage, in general.

Hint: This will again make use of the sum-over-paths approach, though in a different way to how it’s
been used before. The first thing you should notice is that a BQPSPACE computation will have at most
an exponential number of gates (but will act on a polynomial number of qubits). Denote the circuit for
that computation as C. Imagine cutting the circuit at half its depth (or after half of the gates have been
performed, either way works). That is, we can express it as C = C2C1, where C1 is the first half of the
circuit (the gates up to half the depth of C) and C2 is the second half. We can then do a sum-over-paths
for this partitioning of C, so that:

〈0n|C |0n〉 =
∑

z∈{0,1}poly(n)

〈0n|C2 |z〉 〈z|C1 |0n〉

Note that if C1 and C2 were just a single gate each (or were depth 1 circuits), the sum could be computed
in polynomial space. This is of course not the case, but is a useful observation. Think about what would
happen if you continued this process recursively (splitting C1 and C2 in half etc).

If you are still unsure about how to proceed, look up Savitch’s theorem showing NPSPACE = PSPACE

(where NPSPACE is non-deterministic polynomial space, the space analogue of NP).

C. Amplification. Recall that in the definitions of BPP and BQP respectively, we allowed for an error
of 1/3. In other words, an input x which is a YES instance is accepted by a polynomial-time randomized
(respectively, quantum) algorithm with probability greater than 2/3, while a NO instance is accepted with
probability at most 1/3.

Show that the success probability of the algorithm can always be amplified so that its maximum error
probability is 2−p(|x|), for some polynomial p. In other words, YES instances are accepted with probability
1− 2−p(|x|) and NO instances are accepted with probability at most 2−p(|x|).

Hint: Taking a majority vote and Chernoff-Hoeffding bounds (see for instance https://en.wikipedia.
org/wiki/Hoeffding%27s_inequality).

D. BPPBPP = BPP. We also argued in the lectures that PP = P, since any polynomial-time algorithm that
invokes another polynomial-time algorithm as a subroutine leads to an overall polynomial-time algorithm.
Show that BPPBPP = BPP. You might think that this is result is immediate, but there is a slight subtlety.
In BPPBPP, we are querying an oracle, O, which can be implemented in BPP. Whenever the oracle is
queried with some input, x, it will output 0 or 1 deterministically depending on whether x is accepted by

2Note that this is different from universality in the sense of approximating any unitary. H and CCNOT are clearly not
universal in that sense, as they contain only real entries and so one cannot approximate a unitary with complex entries using
these gates. Nevertheless, H and CCNOT are universal for quantum computation, in the sense that the output probabilities
of any quantum circuit can be reproduced by a circuit composed only of H and CCNOT gates.

2

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality
https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

the associated BPP computation with probability greater than 2/3 or less than 1/3. Thus, if you were to
directly implement O as a BPP computation, you will only obtain the correct 0 or 1 output with probability
2/3. How do you resolve this issue?

Hint: Amplification.

E. BQPBQP = BQP. Using ideas from the previous result show that BQPBQP = BQP. Here there is another
subtlety which does not arise in the classical case. In this case, we model the oracle as a unitary performing
the mapping O |x〉 |y〉 = |x〉 |y ⊕O(x)〉 where O(x) is 0 or 1 depending on whether the associated quantum
computation accepts x with probability greater than 2/3 or less than 1/3, respectively (and |y〉 is one qubit).
If we were to directly implement the quantum circuit for the computation that O decides, we only know that
the output of that circuit will have high overlap with |0n〉 when x is a YES instance and low overlap with
|0n〉 when it is a NO instance. But note that this does not have the same behavior as O when viewed as a
unitary. How do you then implement O as a polynomial-size quantum circuit?

Hint: Uncomputing and amplification.

Problem 2 (Post-selection)

It can be sometimes insightful to consider “unphysical” models of computation and study their computational
power in relation to known complexity classes. Towards that end, we will consider probabilistic and quantum
computation augmented with post-selection. Post-selection is the ability to discard unwanted results and
condition the output of the computation on some event (which can occur even with exponentially small, but
non-zero, probability).

Let us then define the following classes:

Definition 1 We say that a promise problem Π = (YES,NO) ∈ PostBPP if there exists a deterministic
polynomial-time algorithm A(x, r) that outputs two bits b1, b2 ∈ {0, 1}, such that for all x ∈ YES ∪NO:

• If x ∈ YES,
Pr

r←U{0,1}poly(|x|)
[b1 = 0 | b2 = 0] ≥ 2/3,

where (b1, b2)← A(x, r).

• If x ∈ NO,
Pr

r←U{0,1}poly(|x|)
[b1 = 0 | b2 = 0] ≤ 1/3,

where (b1, b2)← A(x, r).

In both cases, it should be that Prr←U{0,1}poly(|x|) [b2 = 0] > 0.

To give some intuition, our randomized algorithm outputs two bits. We’re conditioning (or post-selecting)
on the value of the second bit being 0 (which should always happen with non-zero probability) and based
on that, the value of the first bit decides whether to accept x.3 The quantum case is similar:

3Note that here b1 = 0 means accept and b1 = 1 means reject.

3

Definition 2 We say that a promise problem Π = (YES,NO) ∈ PostBQP if there exists a uniform family
of polynomial-size quantum circuits {Cn}n≥0, with Cn acting on m(n) = poly(n) qubits, such that for all
x ∈ YES ∪NO:

• If x ∈ YES,
‖(〈00| ⊗ I⊗m−2) Cn |x〉 |0k〉 ‖2

‖(I ⊗ 〈0| ⊗ I⊗m−2) Cn |x〉 |0k〉 ‖2
≥ 2/3.

• If x ∈ NO,
‖(〈00| ⊗ I⊗m−2) Cn |x〉 |0k〉 ‖2

‖(I ⊗ 〈0| ⊗ I⊗m−2) Cn |x〉 |0k〉 ‖2
≤ 1/3.

where n = |x|, k = m− n and ‖(I ⊗ 〈0| ⊗ I⊗m−2) Cn |x〉 |0k〉 ‖ > 0.

The fractions in the two conditions simply represent the ratio of the probability of first two qubits being
projected onto |0〉 and the probability that just the second qubit is projected onto |0〉. Note the use of ‖ · ‖
to denote the L2 norm, since the quantities inside ‖ · ‖ are vectors. Just like in the classical case, we’re
conditioning on the second qubit being |0〉 (which should occur with non-zero probability) and looking at
the outcome of the first to decide acceptance.

It should be clear to you that PostBPP ⊆ PostBQP as well as that BPP ⊆ PostBPP and BQP ⊆ PostBQP.

A. In the definitions of PostBPP and PostBQP we are post-selecting on the value of one bit (or qubit).
Show that post-selecting on multiple bits (or qubits) does not change the computational power of PostBPP
and PostBQP, respectively. It’s clear that post-selecting on the value of a single bit (or qubit) is a special
case of post-selecting on multiple bits (or qubits). So, clearly, more post-selections can only make the model
stronger. What you have to show is that, in fact, post-selections on multiple bits (or qubits) can always be
reduced to the case of post-selecting on a single bit (or qubit).

Hint: Logical AND.

B. Show that NP ⊆ PostBPP. Give a probabilistic algorithm with post-selection that solves an NP-complete
problem (for instance SAT). Note that using A, you can post-select on as many bits as you like. You should
think carefully about how to do this as the “obvious” way of post-selecting on a satisfying assignment
doesn’t work (when a satisfying assignment doesn’t exist, the probability of the post-selected event is 0 and
the post-selected event must always have non-zero probability).

This is our first evidence of the “unphysicality” of these classes. With post-selection we would be able to
solve NP-complete problems efficiently.

C. Show that PostBPP ⊆ PP. In fact, one can even show that PostBPP ⊆ Σ3 (where Σ3 is the 3rd level of
the polynomial hierarchy), but here you are only required to show containment in PP. Note that showing
containment in PPP is not sufficient, you have to show containment in PP.

Hint: First think about the containment BPP ⊆ PP and how post-selection affects it.

D. Show that PostBQP ⊆ PP.
Hint: Similar to C, first consider the proof that BQP ⊆ PP from Problem 1 and then see how to extend

it to allow for post-selection.

4

E. Show that PP ⊆ PostBQP. Together with D, this shows that PostBQP = PP. This is a very surprising
result, as PostBPP 6= PP unless the polynomial hierarchy collapses. This is yet another indication that quan-
tum computation is more powerful than classical computation—under post-selection quantum computation
remains more powerful, unless the polynomial hierarchy collapses.

Hint: To show this, recall that in the lectures we thought about PP as deciding whether a boolean
formula φ has more than half of its assignments as satisfying or less than half. We saw that we can encode
the difference between the number of satisfying and unsatisfying assignments in the amplitude of a certain
output state. The problem is that that amplitude is exponentially small, as it is normalized by dividing
by the (square root of) total number of assignments. However, with post-selection we can further divide
the output probability by the probability of some extremely unlikely event. Leverage this to arrive at an
amplitude that is large when more than half of the assignments of φ are satisfying, and that is close to 0

otherwise.

Problem 3 (Oracles and query complexity)

A Recall that the decision version of Simon’s problem is that we are given oracle access to a function that
is promised to be either a Simon function (a 2-to-1 function, f , for which f(x) = f(y) iff. x = y ⊕ s, for
some s ∈ {0, 1}n, s 6= 0n) or a 1-to-1 function and we have to accept in the former case and reject in the
latter. We showed that relative to this oracle, denoted O, it is the case that BPPO 6= BQPO. One can of
course show the same separation with the complement of Simon’s problem as well (where the YES and the
NO cases are flipped). Use the complement of Simon’s problem to show that BQPO 6⊆ NPO. In other words,
show that coSimon 6∈ NPO.

Hint: Containment in NPO means there’s a deterministic polynomial time algorithm making queries to
O, such that, for the YES cases there exists a polynomial-sized witness that makes the algorithm accept. In
this case a YES instance is a 1-to-1 function. Fix the witness and examine the queries the algorithms makes
in that case. Could those same queries have occurred for a 2-to-1 function?

B In the lectures we saw how to use the polynomial method to lower bound the amount of queries that a
quantum algorithm makes to solve the unstructured search problem. We saw that we can re-express that,
in the decision-tree model, as approximately computing the OR function over a N = 2n-bit size input.
Quantumly this requires Ω(

√
N) queries to the input (and this is tight as we have a matching upper bound

of O(
√
N) with Grover’s algorithm).

Use the polynomial method to prove a lower bound of Ω(N) on the number of quantum queries required
for computing the PARITY function. As the name suggests, PARITY computes the PARITY of an N -bit
input (PARITY(X) = 0, if |X| mod 2 = 0 and PARITY(X) = 1, otherwise).

Hint: Recall the discussion from the end of lecture 10. :)

C Give a quantum algorithm that computes PARITY using N/2 queries. That is, for an input X ∈ {0, 1}N ,
give a quantum algorithm that makes N/2 queries to this input and which outputs PARITY(X). Recall
that quantum queries in this model are queries of the form |i〉 → (−1)Xi |i〉, where i ∈ [2n] is the index of
the i’th bit of X (denoted Xi).

5

Hint: Deutsch-Jozsa.

D Consider the function:

ZMOD4(X) =

1 if |X| mod 4 = 0,

0 otherwise

The function checks if the Hamming weight of X is a multiple of 4. Using the polynomial method, provide
an Ω(N) lower bound for the quantum query complexity of computing ZMOD4.

Problem 4 (Measurement-based quantum computing (MBQC))

We’ve seen that general quantum computations can be expressed as circuits comprised of elementary gates
that act on qubits. This is called the circuit model of quantum computing. An alternative model for
representing quantum computations is known as the measurement-based quantum computing (MBQC) model.
In this model, the idea is to first create a large entangled state. The qubits of this state are then measured
adaptively. In other words, the way in which a qubit is measured depends on the measurement outcomes of
previous qubits. In this exercise we’ll see how this model is equivalent to the usual circuit model.

A First, we will consider a new single-qubit unitary denoted:

J(θ) = HZ(θ) =
1√
2

[
1 eiθ

1 −eiθ

]

where recall that

Z(θ) =

[
1 0

0 eiθ

]
performs a rotation by an angle of θ around the Z axis of the Bloch sphere.

The J(θ) unitary is universal (for different choices of the angle θ). Specifically, any single-qubit unitary
can be written as U = J(0)J(θ1)J(θ2)J(θ3).

Find the J decomposition (i.e. the angles θ1, θ2, θ3) for the cases where U is T , X and Z, respectively.

B With the observation that the J(θ) unitary is universal, we can now see how single-qubit operations are
performed in the MBQC formalism. Suppose we have an input qubit |ψ〉 on which we wish to apply the
J(θ) operation. We start by initializing another qubit in the |+〉 state and performing a CZ gate4 between
|ψ〉 and |+〉, like in the figure below:

1 2
CZ

|ψ〉

M(θ)

|+〉

4Recall that CZ is symmetric, so it doesn’t matter which qubit is the control and which is the target.

6

We now apply a Z(−θ) rotation to the qubit 1 and measure it in the {|+〉 , |−〉} basis. This is denoted by
M(θ). It is equivalent to measuring in the {|+θ〉 , |−θ〉} basis, where |±θ〉 = Z(θ) |+〉 = 1√

2
(|0〉+ eiθ |1〉). If

the measurement outcome was 0 (corresponding to the state having been projected onto |+〉) we do nothing
to qubit 2. If the measurement outcome was 1, we apply a Pauli X to qubit 2. This is referred to as a
correction.

Show that after this process, the state of the second qubit will be J(θ) |ψ〉. In other words,

1 2
CZ

|ψ〉

M(θ)

|+〉

≡ |ψ〉 J(θ)

C The previous example illustrated how to apply a single J(θ) gate to an input qubit in the MBQC
formalism. This can be generalized to the application of multiple J(θ) gates. In particular, consider the
MBQC computation below.

1 2 3 4 5CZ CZ CZ CZ
|ψ〉 |+〉 |+〉 |+〉 |+〉

M(θ3) M(θ2) M(θ1) M(0)

≡ |ψ〉 U

Here, we first initialize a number of qubits in the |+〉 state and entangle them in a line, together with
|ψ〉 using CZ operations. The resulting state is referred to as a graph state. We then measure the qubits
in sequence from left to right. Note the reverse order of the θ angles. This is because we want J(θ3) to be
applied first and J(0) to be last so as to perform the unitary U = J(0)J(θ1)J(θ2)J(θ3). Once again, we need
to perform corrections after each measurement. In this case, there will be both X and Z corrections. The
corrections on a particular qubit are determined by the measurement outcomes of the previous 2 qubits in
the sequence. If the measurement of the previous qubit yielded outcome 1 then we apply an X correction.
If the measurement of the qubit before the previous qubit yielded outcome 1 then we apply a Z correction
(in other words, corrections are determined by the measurement outcomes of the previous two measured
qubits).

Denote the measurement outcomes of qubits 1-4 as o1, o2, o3, o4 ∈ {0, 1}. Show that the corrections can be
incorporated into the measurements. In other words, suppose that we perform the following measurements
without corrections:

1 2 3 4 5CZ CZ CZ CZ
|ψ〉 |+〉 |+〉 |+〉 |+〉

M(θ3) M((−1)o1θ2) M((−1)o2θ1 + o1π) M(o2π)

Show that after these measurements and without corrections (i.e. without having to perform on an
X or a Z correction on the qubits), the output qubit will be in the state Xo4Zo3U |ψ〉, where, as before,
U = J(0)J(θ1)J(θ2)J(θ3).

7

D We now know how to do single-qubit computations in the MBQC model. What about two-qubit com-
putations? For that, we first note that {J(θ), CZ} is a universal set. In other words, any unitary can be
expressed in terms of compositions of those two gates. As we’ve seen, a line graph yields a single-qubit
computation. For two-qubit computations we simply have to create 2-dimensional graph states by allowing
qubits to entangle on the vertical direction as well. For instance, consider the following graph state and its
associated computation (to not overload the figure, we’ll suppress the CZ and |+〉 labels):

1 2 3 4 5

6 7 8 9 10

M(0) M(0) M(π/2) M(0)

M(0) M(π/2) M(0) M(−π/2)

≡

In this case the qubits are measured layer by layer going from left to right. We start by measuring the input
qubits 1 and 6. We then measure qubits 2 and 7, with the measurements being adapted conditioned on the
outcomes of 1 and 6 (in this case, only the measurement of qubit 7 is affected and we would measure with
either M(π/2) or M(−π/2) depending on the outcome of qubit 6).

Show that the given MBQC computation indeed corresponds to performing a CNOT gate. In other
words, after all measurements have been performed (and after performing corrections on qubits 5 and 10),
the output qubits 5 and 10 will be the CNOT of the input qubits 1 and 6.

Hint: You can ignore the corrections (i.e. assume all measurement outcomes are 0 and there are no
corrections). Each horizontal edge and be viewed as the application of a certain J(θ) gate. A vertical edge
is viewed as CZ between the two qubits. With this in mind, show that the sequence of operations being
applied is equivalent to CNOT .

E Putting everything together, explain how you would translate a general computation from the circuit
model to the MBQC model. That is, given as input a quantum circuit C, acting on n qubits, and an input
for that circuit x ∈ {0, 1}n, explain the steps for performing C |x〉 in the MBQC model. You can assume
that you have a decomposition of all the gates in C in terms of J(θ) and CZ gates.

Problem 5 (Hardness of circuit sampling via post-selection)

Recall that in the lectures we considered the weak quantum circuit simulation task. The task was to exactly
sample from the output distribution of a quantum circuit, given as input. As such, we’ll rename the task
quantum circuit sampling. More formally,

Quantum circuit sampling
Input: Quantum circuit C acting on n qubits and a number m ≤ n.
Output: Sample y ∈ {0, 1}m such that Pr[y] = ‖(〈y| ⊗ In−m) C |0n〉 ‖2.

8

We showed that if a polynomial-time classical algorithm could succeed at this sampling task, it would lead
to a collapse of the polynomial-hierarchy at the 3rd level. In the proof we used Stockmeyer’s approximate
counting algorithm and the fact that deciding whether the output probability of a general quantum circuit
is strictly positive is complete for the class coC=P. Here, you’re going to use the tools you’ve learned in this
assignment to give a simpler proof of the hardness of quantum circuit sampling. You will then extend that
proof to the case of constant-depth quantum circuits.

A Using post-selection and the ideas developed in Problem 2, show that if a polynomial-time randomized
algorithm succeeded at the quantum circuit sampling task it would lead to a collapse of the polynomial
hierarchy at the third level. You can assume that it is known that PostBPP ⊆ Σ3 and PostBQP = PP. Also
recall Toda’s theorem which says that PH ⊆ PPP.

Hint: Suppose there’s a polynomial-time deterministic algorithm A, such that

Pr
r←U{0,1}poly(n)

[y ← A(C, x, r)] = ‖(〈y| ⊗ In−m) C |0n〉 ‖2

for all C and m ≤ n. What does the computational power of the algorithm become under post-selection?

B We now want to extend this argument to the case of constant-depth quantum circuits. To do so, first
show that any quantum circuit C can be performed in constant depth using post-selection.

Hint: The application of the circuit C on some state |x〉 can be viewed as an MBQC computation. Note
that creating the graph state can be done in constant depth (why is that?). What would happen if you had
no corrections in the MBQC computation?

C Finally, consider the following task:

Shallow quantum circuit sampling
Input: Constant depth quantum circuit C acting on n qubits and a number m ≤ n.
Output: Sample y ∈ {0, 1}m such that Pr[y] = ‖(〈y| ⊗ In−m) C |0n〉 ‖2.

Using A and B, show that if a polynomial-time classical algorithm could succeed at this task, the
polynomial hierarchy again collapses at the 3rd level.

9

